
1

DATA LINK TEST AND ANALYSIS SYSTEM/
ATCRBS TRANSPONDER TEST SYSTEM

Technical Reference

John Van Dongen

May 1990

DOT/FAA/CT-TN90/7

This document is available to the U.S. public
through the National Technical Information

Service, Springfield, Virginia 22161.

2

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

DOT/FAA/CT-TN90/7

4. Title and Subtitle 5. Report Date
DATA LINK TEST AND ANALYSIS SYSTEM/ATCRBS May 1990

TRANSPONDER TEST SYSTEM TECHNICAL REFERENCE 6. Performing Organization Code
ACD-320

7. Author(s) 8. Performing Organization Report No.

John Van Dongen DOT/FAA/CT-TN90/7

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
Federal Aviation Administration

Technical Center 11. Contract or Grant No.
Atlantic City International Airport, N.J. 08405 T2001F

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

U.S. Department of Transportation Technical Note
Federal Aviation Administration

Technical Center 14. Sponsoring Agency Code
Atlantic City International Airport, NJ 08405

15. Supplementary Notes

16. Abstract

This document is reference material for personnel using or making software changes
to the Data Link Test and Analysis System (DATAS) for Air Traffic Control Radar
Beacon System (ATCRBS) transponder testing and data collection.

This is one of a series of documents to be published on DATAS.

17. Key Words 18. Distribution Statement

Transponder (testing of) This document is available to the public through

Data Link the National Technical Information Service,
Data Link Test and Analysis System (DATAS) Springfield, VA 22161

19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 152

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

iii

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY vii

INTRODUCTION 1

Background 1

DESCRIPTION OF EQUIPMENT 2

Hardware 2
Software 4

ATCRBS GENERAL DESCRIPTION 4

Interrogation 4
Side-Lobe Suppression 6
Reply 6

SYSTEM USER'S GUIDE 8

ATCRBS Transponder Field Testing 8
System Start-up 8
Data Collection Procedure 9
Main Menu 9
Test Options Menu 11
Transponder Test Screen 13
Test Summaries 16
Parameter Modification 19

Test Sequence Files 23
General Description 23
Test Numbers 23
SEQ - Test Sequence File Editor 23
Calling the SEQ Editor 24
Reading Files 24
Editing Files 26
Writing Files 27

BIBLIOGRAPHY 29

APPENDIXES

A - ATCRBS Field Test Functions
B - Sequence File Editor Functions
C - ATCRBS Field Tests

LIST OF ILLUSTRATIONS

Figure Page

iv

 1 DATAS 3

 2 ATCRBS 5

 3 ATCRBS Interrogation 7

 4 ATCRBS Antenna Patterns 7

 5 ATCRBS Reply 7

 6 Screen #1 10

 7 PC System Activation 11

 8 Test Options Menu 12

 9 Transponder Test Screen 13

 10 Transponder Test Screen with Field Test
in Progress 14

 11 Transponder Test Screen with Field Test Complete 15

 12 Test Summary Menu Screen 17

 13 Summary Menu Screen "Multiple Summaries"
 Selected 18

 14 Test Summary Page 18

 15 Parameter Modification Menus, Screen #l 20

 16 Interrogation Parameter Menu 21

 17 Test Parameter Menu 22

 18 SEQ Display #1, File Access 25

 19 SEQ Display #2, Example File Display 25

 20 SEQ Display #4, Edit Screen 26

 21 SEQ Display #3, Test List 28

 22 SEQ Display #1, File Access in Write Mode 28

LIST OF TABLES

Table Page

 1 Interrogation Parameters 21

 2 ATCRBS Transponder Tests 24

v

EXECUTIVE SUMMARY

This document provides reference material for persons using the Data
Link Test and Analysis System (DATAS) for testing Air Traffic Control
Radar Beacon System (ATCRBS) transponders.

Included in this document is a brief overall description of the
DATAS, a brief description of the ATCRBS, a thorough description of
how to operate the DATAS ATCRBS transponder analysis system (User
Guide), a detailed description of the DATAS ATCRBS transponder
analysis programs, and a thorough description of each of the
transponder field tests.

1

INTRODUCTION

BACKGROUND.

Since the beginning of the federal operation of the air traffic
control (ATC) system in 1936, the amount of air traffic has increased
dramatically. In 1981 the Federal Aviation Administration (FAA)
assessed their current status and it was predicted that by the year
2000 air traffic would double. Faced with this situation, the FAA
conceived the National Airspace System (NAS) Plan. The NAS Plan
included replacing the entire existing air traffic system with new
automated and computer enhanced systems. These systems included an
Advanced Automation System (AAS) that will provide computer
assistance to air traffic controllers, increased reliability via a
digital data link between ground sensors and aircraft which will be
provided by a Secondary Surveillance Radar (SSR) known as the Mode
Select Beacon System (Mode S), which will replace the current Air
Traffic Control Radar Beacon System (ATCRBS). Delivery of the Mode S
sensors will be in the 1990's.

The FAA Technical Center has a major role in the implementation of
the NAS Plan. Many of the systems are being designed and/or tested at
the Center. From the design and integration of such complex systems
spawns the growth of small test systems such as the Data Link Test
and Analysis System (DATAS).

The DATAS was originally conceived at the Technical Center by members
of the Data Link project whose responsibilities include verification
of Data Link systems reliability, interface protocols and system
capacities. The DATAS was designed and fabricated at the FAA
Technical Center to provide such test and analysis capabilities.

DATAS is capable of testing all components of the Data Link system.
These components include: ATCRBS and Mode S transponders, avionics
Data Link processors (ADLP), and all Data Link system interfaces. It
will also provide the capability of Mode S sensor simulation and 1030
and 1090 megahertz (MHz) radio frequency (RF) environment analysis
for all beacon transmissions including Traffic Alert and Collision
Avoidance Systems (TCAS). The DATAS has the capability of RF signal
analysis within the frequency range of 950 to 1200 MHz.

This document accompanies the completion of the first phase of the
development of the DATAS, the ATCRBS transponder test system. Certain
sections of this document are intended to provide unfamiliar users of
the system with enough information to perform data collection
operations. Other sections provide detailed information on the
system software in order to make software maintenance easy and to aid
development of future DATAS services.

1

2

DESCRIPTION OF EQUIPMENT

HARDWARE.

Figure 1 shows a very general block diagram of the DATAS in the
ATCRBS transponder field data collection configuration. This diagram
displays the full system. Some of the components shown are optional
since they are not required when the system is used strictly for data
collection purposes, but are used for data analysis functions.

Physically, the system consists of three racks: the RF unit, the
DATAS hardware section (digital components), and the computer rack
(each of which is approximately 19 inches x 12 inches x 19 inches), a
dish antenna (which is approximately 50 inches in diameter), and, at
minimum, one video display terminal.

The Motorola 68020 computer uses a Motorola MVME 135A central
processing unit (CPU). This processor card consists of a 68020 32-bit
microprocessor operating at 20 MHz. There is 4 megabytes of on-board
random access memory (RAM). The card also contains a 68881 floating
point coprocessor. The memory management unit has been disabled
because there is too much overhead involved for some of the memory
input/output (I/O) functions that the system will be required to
perform with the Mode S testing functions.

The computer contains an MVME50 card for timing functions. The card
provides up to 1 microsecond resolution.

The computer system uses a WYSE 75 (or compatible) terminal and any
centronix interface printer. The lab system for software
development uses a Fujitsu M304X series printer. The terminal is
required to operate the system, but the printer is only required if
the user wishes to obtain hardcopies of the transponder test
summaries in data collection situations.

The DATAS may also contain an optional data presentation subsystem
for data storage, data reduction, and report generation. The
presentation subsystem is actually an independent personal computer
(PC) system that plugs into the Versa Module Extended (VME) Bus rack
and interfaces to the VMEbus. A Xycom XVME-682 VMEbus PC advanced
Technology (AT) processor module is used for this purpose. This
subsystem requires its own graphics display terminal. Optional
peripherals include a floppy disk drive and a Hewlett Packard (HP)
Laser Jet II printer or equivalent.

3

RF UNIT

DATAS

HARDWARE

SYSTEM

INTERFACE

CARD

VME BUS

MOTOROLA 68020

COMPUTER

SYSTEM

DATA

PRESENTATION

SUBSYSTEMCENTRONIX PRINTER

WYSE TERMINAL PC TERMINAL

LASER PRINTER

FIGURE 1. DATAS

SOFTWARE.

4

The Motorola computer systems were used for the software development
of the DATAS. The operating system of the DATAS is Motorola VERSADOS,
version 4.6. VERSADOS operates on the various CPU boards and systems
offered by Motorola. VERSADOS is a real-time operating system that
offers the facilities to operate in a real-time domain.

The DATAS programs were written in C language, except for a few of
the lower level interrupt handling functions which were written in
assembly language. The compiler used was the Alcyon C68 C compiler.

ATCRBS GENERAL DESCRIPTION

The ATCRBS is a secondary surveillance radar system that was designed
to provide ATC with more information about aircraft within controlled
areas. It is a cooperative system that consists of a ground-based
rotating directional antenna, interrogator/receiver, signal
processing equipment, and active aircraft transponders (figure 2). In
operation, an interrogation pulse group is transmitted from the
directional antenna and triggers each airborne transponder located in
the directional main beam as the antenna rotates or scans by the
aircraft. Measurement of the round-trip transmit time (the
interrogation followed by the reply) determines the range; the mean
direction of the interrogator antenna during aircraft replies
determines the azimuth of the replying aircraft. This range/azimuth
information is used to track the location of aircraft within
controlled areas.

The ground-based interrogations are very specific, rigidly controlled
RF pulse groups (code trains) transmitted by the ground equipment (on
1030 MHz) to interrogate all aircraft in the area of coverage. When
the aircraft transponder receives an interrogation, it responds with
a coded reply pulse train back to the ground station on a different
frequency (1090 MHz). This reply contains the aircraft identity
selected by the pilot, or, when the aircraft is properly equipped,
contains the aircraft altitude (figure 2). The ground-based
equipment can then automatically decode the information and determine
the aircraft range, azimuth, identity, and altitude. Discrete
aircraft emergency codes are also provided in the ATCRBS system.

INTERROGATION.

The basic interrogation consists of pulse pairs (P1 and P3) which
are transmitted by the rotating directional antenna, normally at a
repetition rate of several hundred pairs per

5

FIGURE 2. ATCRBS

6

second (figure 3). These pulses are nominally of equal amplitude and
are separated by time intervals dependant on the use of the mode of
interrogation. The primary Modes of interest are Mode 3/A (identity)
and Mode C (altitude). Other modes such as Mode 4 are not used in the
civil ATC system and will not be considered. The time interval or
separation between P1 and P3 in Mode 3/A is nominally 8 microseconds.
The aircraft transponder decodes this time interval as an "identity"
interrogation and responds with the aircraft beacon code selected by
the pilot. A time interval of 21 microseconds between P1 and P3 is
decoded as an altitude interrogation (Mode C) and requests the
transponder to reply with the aircraft's barometric altitude.

SIDE-LOBE SUPPRESSION.

A side-lobe suppression mechanism 'is required to prevent the
transponder from replying to interrogation signals that do not
originate from the main beam of the directional antenna. Side lobes
from a directional antenna radiate in various directions (figure 4).
These side lobes do not affect the transponders that are distant
because their range is much less than that of the main beam. However,
when the transponder is near the radar, it may detect side lobes at
nearly all azimuth angles. Without side lobe suppression, an aircraft
near the radar might appear as a circle around the antenna on the
controllers screen since it responds to interrogations at varying
azimuths.

To facilitate side lobe suppression, a P2 pulse is transmitted 2
microseconds following the P1 pulse (figure 3). This pulse is
transmitted omnidirectionally, roughly superimposed on the side-lobe
radiated area (figure 4). When the transponder detects the P1 pulse 9
decibels (dB) (or more) stronger than the P2, it must be in the main
beam and will reply. If the P2 pulse detected is equal or greater in
strength than the P1 pulse, the transponder will initiate suppression
and not reply to the interrogation.

REPLY.

When the proper interrogation is detected, the transponder generates
and transmits a reply pulse train encoded with either the aircraft's
identity or pressure altitude, depending on the mode of the
interrogation. The reply consists of 2 framing pulses (F1 and F2)
spaced 20.3 microseconds apart; 12 data pulses and 1 special purpose
pulse position (X pulse), all spaced in increments of 1.45
microseconds from the first framing pulse; and a special position
identification pulse (SPI) spaced 4.35 microseconds after the F2
framing pulse (figure 5).

In the case of the Mode 3/A interrogation, aircraft identity is
encoded in the ABCD pulses providing a capability of 4,096 discrete
codes in the reply. For Mode C, the aircraft altitude is

7

8

encoded in these same pulses, providing altitude capability from -
1,000 to +126,700 feet in 100-foot increments.

The X pulse position indicated in the reply is used exclusively by
the military in this country. The SPI pulse is the "IDENT" pulse
transmitted upon request of the air traffic controller in Mode 3/A
only. This results in special indications on the air traffic
controllers display which identifies the particular aircraft
responding to the ident request.

SYSTEM USER'S GUIDE

This section describes the operation of the various programs that may
be run when DATAS is used for ATCRBS transponder testing in the field
data collection environment.

ATCRBS TRANSPONDER FIELD TESTING.

DATAS can be used to test the operation of beacon transponders
without physically connecting to the hardware in any way. Although
this does impose some limitations on the extent to which the units
may be tested, a comprehensive performance analysis can be made.

The extent of testing that can be done on the transponders depends
largely on how much control over the aircraft the personnel running
the tests have. Field testing can range from having the system
located near a taxi-way at an airport and making quick measurements
as the aircraft pass, to having the aircraft stop at the test
vehicle for an extensive test. The design of the field test programs
has taken the full range of situations into consideration and
provides the user with the ability to take full advantage of his
particular test situation.

SYSTEM START-UP. When the system is powered on it will perform the
boot procedure and activate VERSAdos which, upon initialization, will
prompt the user for several inputs. The first is "ENTER DEFAULT
SYSTEM VOLUME:USER=." Here the user should respond with the volume
and user number that contains the ATCRBS field testing programs. An
example response is "sys:321." The volume name is "sys" and should
not change. The user number "321" is where the ATCRBS field test
software was developed and should be the one where it will run. If
there are any changes, it will be established with system delivery.
If a carriage return is entered, the default response is selected
(sys:0). A new user number can be established with the "use" command
or by logout and login.

The system will then prompt for the current date with "ENTER DATE
(MM/DD/YR)=." The system must be dated since the current

9

date is used as part of the file names created by the programs. The
test date is required as an entry from programs that reproduce test
data previously acquired. For this reason, the date of data
collection should be recorded.

The system will then prompt for the current time with "ENTER TIME
(HR:MIN)=." The time of day is not a critical entry for the ATCRBS
testing programs, but may be with some of the other DATAS software
packages. The correct time of day should be entered.

When the system completes the bulletin and several chain files, the
"=" prompt will appear. VERSAdos is now active. Any VERSAdos command
may be entered or any of the DATAS application programs that reside
in the current user number may be run.

DATA COLLECTION PROCEDURE. There are several basic steps involved
in conducting a transponder field test. First a location for the
system must be chosen, then the coupling losses must be measured
between the system and the transponder's antenna, a test scenario
must be generated, and the program must be run that will conduct the
actual field testing.

MAIN MENU. The ATCRBS Transponder Field Test program is activated
with the command "afexec". Figure 6 shows screen #1 of the ATCRBS
transponder field testing program. This screen provides a menu for
the user to select which of the higher level functions of the program
to perform. The current menu choice is highlighted in reverse video,
and the arrow keys are used to move between choices. The function key
F5 will exit the program.

1. "TEST LOCATION IDENTIFIER." This is not one of the functions of
the program, but is an important item. An entry here is required
only if transponder data collection will be conducted. Up to four
characters may be entered at this prompt. A carriage return is
required to accept the entered characters. It is suggested that the
standard four character identification code for the airport (or the
nearest airport to the test location) is entered here, although
anything the user desires up to four characters may be entered.
Whatever is entered here must be remembered since this character
field is used as part of the data file name. The same response
entered here when data are collected will be required by the
functions that reduce or reproduce previously recorded data.

2. "CALIBRATE COUPLING LOSS." If this prompt is selected with a
carriage return, the coupling loss calibration function is performed.
The purpose of this function is to measure the difference between the
original calibrated RF point of the system with the location where
the aircraft will be tested. These differences are stored as offsets
for test data acquired during testing. Those measurements affected
by coupling losses are sensitivity (which requires an accurate
system transmit power level), reply power, and reply delay. The
coupling loss program has not been developed as of yet since the need
for the system as a transponder field tester has not arisen.

DATAS TRANSPONDER FIELD DATA COLLECTION PROGRAM

10

[USE ARROW KEYS TO MOVE, <RETURN> TO SELECT]

TEST LOCATION IDENTIFIER: UACY

 CALIBRATE COUPLING LOSS

 RUN TRANSPONDER TESTS

 MODIFY TEST INTERROGATION PARAMETERS

 RUN TRANSPONDER TEST SUMMARIES

 PC SYSTEM ACTIVE: NO

<F5>-EXIT

FIGURE 6. SCREEN #1

3. "RUN TRANSPONDER TESTS." This selection will activate the
transponder test programs. These programs require a test sequence
file and a calibrated system. The description of these programs is
later in the section (Test sequence files).

4. "MODIFY TEST INTERROGATION PARAMETERS." This selection will allow
the user to modify how the tests themselves will run. These programs
allow the user to change things such as P1 and P3 width,
interrogation power level, and/or the number of samples to take,
etc., for each of the transponder tests. This selection should be
made when the user wishes to reduce data collection time, modify the
tests performance, or increase data collection for a more detailed
analysis. The description of these programs is discussed later in
this section.

5. "RUN TRANSPONDER TEST SUMMARIES." This selection is used to
reproduce test results of previously recorded data. Test summaries
or test plots can be produced. Test plots require the

11

PC subsystem, therefore, the PC system activation must be performed
prior to making plots of test results. These programs are described
later in this section.

6. "PC SYSTEM ACTIVE." This prompt is used to establish
communications between the PC subsystem and the Motorola 68020
computer. This communication path is required for plotting data on
the PC system screen or printer, or storing the data on the PC disk.
Figure 7 shows the subsequent prompts that follow a "YES" response.
The "SCREEN PLOT (PC)" prompt allows data to be plotted after each
series of tests is completed ("ON POST-TEST"), as the data is
acquired (live) ("ON LINE"), or no plot on the screen ("OFF"). The
"HARDCOPY PLOT (PC)" prompt will select whether or not to produce a
hardcopy of the plots on the PC system. The "STORE DATA IN PC (PC)"
prompt will select whether or not to store the data on disk in the PC
system.

PC SYSTEM ACTIVE: YES (NO)
SCREEN PLOT (PC): ON POST-TEST (ON LINE, OFF)
HARDCOPY PLOT (PC): NO (YES)
STORE DATA IN PC (PC): NO (YES)

FIGURE 7. PC SYSTEM ACTIVATION

TEST OPTIONS MENU. Figure 8 shows the Test Options menu. This menu
allows the user to select between various options that control how
the system will conduct the transponder tests. Again, the current
menu choice is highlighted in reverse video, and the arrow keys are
used to move between choices. The function key F5 will return to
screen #1 and F6 will advance to the transponder test screen.

1. "HARDCOPY OF TEST RESULTS." This prompt can be answered either
"YES" or "NO." The selection is made with the space-bar key
(actually, any key will work for any of the space-bar selection
prompts). This will select whether or not a printed summary page is
automatically produced for each transponder tested. If "NO" is
selected a printed summary could still be produced from the command
keys during testing.

2. "POWER MODE." This prompt can be answered either "MANUAL" or
"AUTOMATIC." The selection is made with the space bar key. If
"MANUAL" power mode is selected the interrogation power of the system
can be adjusted manually by the user from the transponder test
screen. If "AUTOMATIC" power mode is selected the system will adjust
the interrogation power automatically between tests in order to
maximize reply efficiency and minimize interference

12

from other transponders. Automatic power mode has not yet been
implemented.

3. "INITIAL POWER LEVEL decibels referenced milliwatt (dbm)." This
prompt allows the user to enter the starting interrogation power
level in -dBm. The prompt will accept up to two numeric digits and
requires a carriage return. The level will be adjusted by the system
if power mode is "AUTOMATIC" or can be adjusted by the user if power
mode is "MANUAL."

DATAS TRANSPONDER FIELD DATA COLLECTION PROGRAM
TEST OPTIONS MENU

SELECT USING ARROW KEYS............. <CR> TO ENTER

 HARDCOPY OF TEST RESULTS: NO

 POWER MODE: MANUAL

 INITIAL POWER LEVEL (dBm): -45

 TEST SEQUENCE FILE: STDSEQ

 STORE DATA: YES

 DATABASE FILE EXT.: AA NEW FILE

F5 TO EXIT -------------- F6 TO START SYSTEM

FIGURE 8. TEST OPTIONS MENU

4. "TEST SEQUENCE FILE." The test sequence file name is entered at
this prompt. The prompt will accept up to eight characters and
requires a carriage return. Entry will be tested by the program to
see if it is a valid file name. If it is not, error messages will
appear on the screen. The test sequence file contains a list of
transponder test numbers that control which tests and in what order
they will be run.

S. "STORE DATA." This prompt can be answered either "YES" or "NO."
The selection is made with the space-bar key. If the user elects to
store data he will be prompted for a data file name extension. The
data file will contain test data and aircraft information for all
transponders tested. The data should be stored whenever the system
is used in field data test situations.

13

The only time no data storage should be selected is during debug
situations.

6. "DATABASE FILE EXT.." This prompt will accept up to two
characters and requires a carriage return. This prompt is only
available when the user has selected data storage in the previous
prompt. The entry will be the file extension for the data file. If
the data file does not exist, "NEW FILE" will be displayed. If the
data file exists "WARNING: FILE EXISTS.. WILL APPEND NEW DATA" will
be displayed.

TRANSPONDER TEST SCREEN. Figure 9 shows the transponder test
screen. This is how the display will appear after the F6 key is
entered from the previous screen shown in figure 8. From here the
transponder tests are conducted.

DATAS ATCRBS FIELD DATA COLLECTION SYSTEM 08-04-1989
 IDLE INTERROGATION RUNNING
 TEST STATUS POWER DELAY OUTPUT POWER (DBM):- 45.0

AIRCRAFT ID: AIRFRAME HEIGHT(FT):0
 AIRCRAFT TYPE: POWER MODE:MANUAL
TRANSPONDER TYPE:
COMMENT FIELD:

<F5>-EXIT <F7>-INCREASE <F8>-DECREASE POWER
 <F9>-RUN TEST <F10>-STOP IDLE

FIGURE 9. TRANSPONDER TEST SCREEN

The date is displayed at the top right corner of the screen. Just
below that line is the system status message line. Here the current
status of the system is displayed, such as "IDLE INTERROGATION
RUNNING" or "FIELD TEST IN PROGRESS," etc.

The interrogation power of the DATAS system is displayed in the upper
right corner. This level can be adjusted using the F7 and F8 function
keys if the system is in manual power mode.

14

The center portion of the screen is the scrolling region for the
ATCRBS tests. As each test completes, the test number, completion
message, reply power, and reply delay are sent to the screen. See
figure 10 as an example of a field test in progress.

 DATAS ATCRBS FIELD DATA COLLECTION SYSTEM 08-04-1989
 FIELD TEST IN PROGRESS
TEST STATUS POWER DELAY POWER (DBM):- 45.0
__
1-TEST 10.... COMPLETE 55.7 dBm 3.1 us
2-TEST 17.... COMPLETE 55.8 dBm 3.0 us
3-TEST 19

AIRCRAFT ID: AIRFRAME HEIGHT(FT):0
 AIRCRAFT TYPE: POWER MODE:MANUAL
TRANSPONDER TYPE:
COMMENT FIELD:

<F9>-STOP TEST

FIGURE 10. TRANSPONDER TEST SCREEN WITH
 FIELD TEST IN PROGRESS

Below the scrolling region is the aircraft information entry area.
Here the Aircraft ID (Tail number), aircraft type, transponder type,
and a comment field entry areas are provided as a means of
identifying the test data. The cursor is moved between these prompts
using the arrow keys; the entries must be ended with a carriage
return. This information is stored with each series of completed
tests. The aircraft information can be entered prior to testing and
after the test has completed. It cannot be entered during the test
sequence or after the test data has been stored. See figure 11 for
an example screen with aircraft information entered. There is also a
prompt for airframe height and power mode within this area. The
cursor is on the airframe height prompt when this screen is initially
displayed so that it can be entered prior to the start of the test.
The measured reply power and the interrogation power delivered to the
aircraft's antenna are affected by the height of the antenna from the
ground. The approximate height of the antenna in feet

15

(usually the height of the underside of the aircraft) should be
entered here prior to the start of the test. There is also a prompt
that allows the user to switch between MANUAL and AUTOMATIC power
mode. (See the description of "POWER MODE" after figure 8 "Test
options menu.")

 DATAS ATCRBS FIELD DATA COLLECTION SYSTEM 08-04-1989
 ENTER AIRCRAFT INFORMATION
TEST STATUS POWER DELAY POWER (DBM):- 45.0

1-TEST 10... COMPLETE 55.7 dBm 3.1 us
2-TEST 17... COMPLETE 55.8 dBm 3.0 us
3-TEST l9... COMPLETE 56.0 dBm 3.1 us
 SENSITIVITY 70 - 71 POWER 55.6 - 56.0 DELAY 3.30 - 3.00
 TEST ENDED AFTER SEQUENCE #3 ... TEST #19

 AIRCRAFT ID:N1234 AIRFRAME HEIGHT(FT):0
 AIRCRAFT TYPE:CESSNA 150 POWER MODE:MANUAL
 TRANSPONDER TYPE:KING KT-76
 COMMENT FIELD:NO MODE C CAPABILITY

 <F9>-STORE TEST RESULTS <F10>-ABORT

 FIGURE 11. TRANSPONDER TEST SCREEN WITH
 FIELD TEST COMPLETE

Below the aircraft information entry area is the function key
definition area. This area displays the currently active function
keys. The function keys will not be the same all the time, they
depend on the current status of the system. For example, if the
system is running, the only active function is F9 which is to stop
testing (see figure 10). Figure 9 shows the active function keys
when the idle interrogation is running. The F5 key will exit (return
to screen #1), F7 and F8 are to increase or decrease the
interrogation power level. They are only active when MANUAL power
mode is selected. The power level is made variable so that the user
can make the power level high enough so that the aircraft being
tested will reply, but low enough so that any other aircraft nearby
will not. The F9 key is used to start the test sequence. The F10 key
will stop the idle interrogation. When the idle interrogation is
stopped the F10 key can be used to start it again.

Figure 10 shows the transponder test screen with the transponder
testing in progress. At the top of the screen, the system status
shows "FIELD TEST IN PROGRESS." The test scrolling region shows that
test 10 is complete and the highest reply power reported during the

16

test was 55.7 dBm and the shortest reply delay was 3.1 microseconds.
Test 17 is also complete, and the improvement shown in both the reply
power and delay may indicate that the aircraft is moving towards the
center of the beam. The only active function key is F9 which can be
used to stop the test.

If the test sequence is not stopped prior to completion with the F9
key, the system will continuously monitor the transponders
sensitivity, reply power, and reply delay until the user stops the
system with the F9 key. At this point the screen will no longer
scroll, but will continuously display the current sensitivity, power,
and delay as compared to the best of each measured so far (see figure
11). The display will show "current value--best value" for each of
the three measurements. If the current value is an improvement over
the best value, it will be displayed in reverse video along with the
word "INCREASING" left of the delay. The best value will then be
updated. The idea behind this is so that these measurements can be
made while the aircraft rolls through the calibrated main beam.

Figure 11 shows the transponder test screen after the test sequence
is complete and the user has stopped the test with the F9 key. The
system status message is reminding the user to enter the aircraft
information. In this example screen the aircraft information has
already been entered.

In the scrolling region, it shows that three tests have run, test 10,
17, and 19. The highest sensitivity measured was -71 dBm, the highest
reply power was 56.0 dBm and the shortest reply delay was 3.0
microseconds. The highest reply power and/or shortest delay can be
measured in any of the transponder tests since they all record that
information.

The active function keys at this point are F9 to store the test
results and F10 to abort the test. If F9 is entered, the data from
all the tests and the aircraft information will be stored in the data
file and a summary of the test results will be displayed (see figure
14). If F10 is entered, the data will be discarded and the screen
will return to original transponder test screen as shown in figure 9.

TEST SUMMARIES. Figure 12 shows the test summary menu screen which
is called when the "RUN TRANSPONDER TEST SUMMARIES" menu selection is
made from the main menu (screen #1). This menu allows the user to
locate data files on the disk in order to produce test summaries or
plot the data using the PC subsystem. The three file location entries
are the location identifier, date, and data file extension. The arrow
keys are used to move
between selections. The location identifier, date, and data file
extension must be the same as what was entered when the test data was
originally collected.

The "SUMMARY MODE" prompt allows the selection of whether to produce
the results of a single aircraft or all aircraft in the file. The
mode selection is switched using the space bar key. If the mode is
"SINGLE" the program will retrieve the test data for a single
aircraft. A subsequent prompt requesting the "AIRCRAFT ID"

17

accompanies the SINGLE summary mode. The identification of the
aircraft is required to find its test results. The aircraft ID must
be entered identical to what was stored with the data, and must be
terminated with a carriage return.

DATAS TEST RESULT SUMMARY PROGRAM

 LOCATION IDENTIFIER: UACY

 DATE: (MMDDYYYY): 08041989

 DATA FILE EXTENSION: AA

 SUMMARY MODE: SINGLE

 AIRCRAFT ID:

 F5 TO EXIT ------------- F6 TO EXECUTE

FIGURE 12. TEST SUMMARY MENU SCREEN

If the summary mode selected is "MULTIPLE" the program will retrieve
all of the data in the file one aircraft at a time (see figure 13). A
second prompt requesting an output device appears with the multiple
summary mode. The selections available are for "SCREEN" or "PRINTER."
A space bar is used to change the selection.

 SUMMARY MODE: MULTIPLE

OUTPUT DEVICE: SCREEN

 FIGURE 13. SUMMARY MENU SCREEN "MULTIPLE SUMMARIES" SELECTED.

Figure 14 shows an example test summary page from a transponder test.
This screen can be called from two different places. First, it could
be displayed following the completion of a transponder test. After
the user elects to store the test data (F9 entered figure 11), the
summary of the tests is displayed. Second, the screen could be called
from the test summary menu (F6 key figure 12).

18

DATAS FIELD TEST SUMMARY

 AIRCRAFT ID: N1234 AIRCRAFT TYPE: CESSNA 150
 TRANSPONDER TYPE: KING KT-76
 COMMENT: NO MODE C CAPABILITY

 10 - Minimum RF Output Power = 52.3 dBm
 17 - Reply Rate Limit = 975 PRF
 Sensitivity Reduction - Mode A 98.0% Mode C 97.0%
 19 - Maximum pulse position error (us) F1 ref = -1.02
 Pulse-pulse ref = -.98

<F5>-EXIT <F6>-PAGE <F7>-PRINT LINE/ALL <F8>-PLOT LINE/ALL

FIGURE 14. TEST SUMMARY PAGE

At the top of the screen is the aircraft information. The center area
of the screen shows the test summaries. In the example shown, tests
10, 17, and 19 were conducted on the transponder. At the bottom of
the screen are the various function keys that are available.

19

The F5 key will exit the screen. If the screen was called from a
Summary program, it will return to the Summary menu. If the screen
was entered following a test sequence, it will return to the
transponder test screen.

The F6 key will page through the test summaries if they take more
room than will fit on one page. In the example shown, there is less
than one screen of test summaries.

The F7 key will print the summary for the test which is displayed in
reverse video (in the example it is in bold). The arrow keys may be
used in order to select another test summary to print. The F7 key
will always print the test summary which is displayed in reverse
video. If SHIFT F7 is entered, all test summaries for the
transponder will be sent to the printer.

The F8 key will plot the test results for the current test displayed
in reverse video. If SHIFT F8 is entered, all tests for the
transponder will be plotted. For anything to be plotted, the PC
system must be on line (see main menu figure 7).

If the screen was called from the summary menu in "MULTIPLE" summary
mode, an additional function will appear. F9, the "MORE" key, is used
to advance to the following transponder test within the file.

PARAMETER MODIFICATION. Figure 15 shows screen 1 of the parameter
modification programs. This screen is called when the "MODIFY TEST
INTERROGATION PARAMETERS" option is selected from the main menu
(figure 6). The test parameters are variables that can be changed by
the user to alter the way a transponder test works. There are two
types of parameters: interrogation parameters which define the
interrogation used by the test, and test parameters which enable test
algorithms to be modified. The interrogation parameters are the same
for all of the tests, but all of them are not used by every test.
Appendix C describes how each test uses the interrogation parameters.

The first screen is simply a prompt for the test number of which the
user wishes to modify. If a "0" is entered, the interrogation
parameters for all tests can be changed. This is useful if, for
example, the user wishes to run all tests at a lower PRF, he would
enter a 0 and change the PRF in the following screen.

A single function key, F5 is provided which is used to return to the
main menu.

--------- PARAMETER MODIFICATION ---------

20

 ENTER TEST NUMBER -

 - TO SET GLOBAL PARAMETERS FOR ALL TESTS

<F5>-EXIT

FIGURE 15. PARAMETER MODIFICATION MENUS
 SCREEN #1

Figure 16 shows an example of an interrogation parameter menu for
test 3. There are two sets of parameters: one for Mode A and the
other for Mode C. A new value for a parameter is entered from the
keyboard followed by a carriage return. The arrow keys are used to
select which parameter to change. The currently selected parameter
is displayed in reverse video (in the example it is shown in bold
print "P1 WIDTH (us) 0.800"). Once a parameter is changed to a
value other than its default value it will be displayed in reverse
video. Each parameter has a limited range and resolution. If a value
is entered that is inappropriate for one of the parameters, an error
message is displayed and the entry is rejected. Table 1 is a table
of the interrogation parameters, their acceptable ranges, and
resolutions.

21

PARAMETER MENU FOR TEST -3

 -----MODE A-----

Pl WIDTH (us) 0.800 P2 WIDTH (us) 0.800
P3 WIDTH (us) 0.800 Pl-P2 SPACING (us) 2.000
Pl-P3 SPACING (us) 8.000 INT POWER OFFSET(dB) 0.000
P2 POWER OFFSET(dB) -40.000 PRF 450
FREQUENCY (MHz) 1030.000

 -----MODE C-----

Pl WIDTH (us) 0.800 P2 WIDTH (us) 0.800
P3 WIDTH (us) 0.800 Pl-P2 SPACING (us) 2.000
Pl-P3 SPACING (us) 21.000 INT POWER OFFSET(dB) 0.000
P2 POWER OFFSET(dB) -40.000 PRF 450
FREQUENCY (MHz) 1030.000

<F5>-EXIT <F6>-SET ALL TO DEFAULT <F7>-SET CURRENT TO DEFAULT

FIGURE 16. INTERROGATION PARAMETER MENU

TABLE 1. INTERROGATION PARAMETERS

Default Minimum Maximum
Parameter Value Value Value Resolution

P1 WIDTH (us) 0.800 0.100 7.975 0.025
P2 WIDTH (us) 0.800 0.100 7.975 0.025
P3 WIDTH (us) 0.800 0.100 7.975 0.025
P1-P2 SPACING (us) 2.000 0.100 80.000 0.025
P1-P3 SPACING (us) *8.000,**21.000 0.200 80.000 0.025
INT POWER OFFSET(dB) 0.000 -90.000 +90.000 0.1
P2 POWER OFFSET(dB) -40.000 -90.000 +90.000 0.1
PRF 450 1 2000 50
FREQUENCY (MHz) 1030.000 900.000 2000.000 0.500

*-Mode A, **-Mode C

The pulse widths are from lead edge to trail edge in microseconds.
The pulse spacings are from lead edge to lead edge
in microseconds. The power offsets are the number of dB's from
normal. For example, if INT POWER OFFSET for a test was +3.000,
that would mean that the interrogation power is 3 dB higher than

22

all other tests at default. These power levels are relative to
the current system power. In~order to introduce suppression into
a test, P2 POWER OFFSET could be set to 0.000. This would mean
that P2 power is equal to Pl,P3 power. PRF is the number of
interrogations per second. Frequency is the RF transmit frequency
in MHz.

The function keys for both the interrogation and test parameter menus
are the same. The F5 key will exit and store the parameters
in the menu. The F6 key will return all parameters on the screen to
their default values. The F7 key will return only the selected
parameter (reverse video) to its default value.

Figure 17 shows an example of a test parameter menu for test 3. The
menu works the same as the interrogation parameter menu. The test
parameters are not the same for all tests. They are user changeable
parameters designed to make the transponder test procedure
more flexible. Their primary importance is in accommodating
the speed of each test to the present test situation. If
there is an unlimited time to test each transponder, the
values could be made to acquire the largest sample of data with the
smallest granularity possible, in order to make each test as accurate
as possible. If the desire is to keep test time to a minimum, the
samples could be reduced and the granularity made greater. The
default values for each test are usually somewhere in the middle.

PARAMETER MENU FOR TEST -3

INTERROGATIONS 100 START POWER (-dBm) 20.000

END POWER (-dBm) 80.000 POWER INCREMENT 5.000

<F5>-EXIT <F6>-SET ALL TO DEFAULT <F7>-SET CURRENT TO DEFAULT

FIGURE 17. TEST PARAMETER MENU

TEST SEQUENCE FILES.

Test Sequence Files are user generated files that determine which
transponder tests are run and in what order when the transponder test
program is activated. A valid test sequence file name is required at
the start of the transponder test program. The DATAS system provides
an editor called "SEQ" to generate or modify test sequence files.

23

GENERAL DESCRIPTION. A test sequence file contains a list of
numbers which determine which transponder tests are run. The order
of the tests are determined by the order of the numbers in the file.
The purpose of test sequence files is to allow a predetermined series
of tests to be run without user interaction during time critical
testing situations.

TEST NUMBERS. Most of the transponder test procedures come from the
ATCRBS/Mode S transponder MOPS section 2.4.2 "Detailed Test
Procedures." The test numbers are assigned in the order that they
appear in the MOPS. The reason the test numbers are not consecutive
is because the MOPS test procedures intermix ATCRBS and Mode S tests,
and this document describes only the ATCRBS transponder tests.
However, it is not required that this numbering scheme be strictly
adhered to since some tests may be combined into one test, or new
tests may be designed to meet specific user requirements. Table 2
lists the available ATCRBS transponder tests.

SEO - TEST SEQUENCE FILE EDITOR. The SEQ editor allows the user to
generate new files, modify existing files, or modify existing files
and store them with new file names.

The SEQ editor is menu driven and utilizes four different menu
screens that provide the following functions:

1. File access - used to read files for editing and write files for
disk storaqe.

2. File display - displays the contents of a test sequence file with
the test numbers referenced with the Minimum Operational Performance
Standard (MOPS) test description.

3. Test list - displays a list of available transponder tests in
numerical order with reference to the MOPS test descriptions.

4. Edit screen - displays the contents of the file as test numbers
for editing purposes.

TABLE 2. ATCRBS TRANSPONDER TESTS

 TEST MOPS
NUMBER REFERENCE DESCRIPTION

2 2.4.2.1 Step 2 Sensitivity
3 2.4.2.1 Step 3 ATCRBS Dynamic Range
9 2.4.2.2.1 Reply Transmission Frequency
10 2.4.2.2.2 Step 1 ATCRBS Power Output
17 2.4.2.2.5 Step 1 Determination of Reply Rate Limit

24

19 2.4.2.3.1 Step 1 ATCRBS Reply Pulse Spacing
20 2.4.2.3.1 Step 2 ATCRBS Reply Pulse Shape
22 2.4.2.3.2 Step 1 Reply Delay
25 2.4.2.4 Step 1 SLS Decoding
27 2.4.2.4 Step 3 SLS Pulse Ratio
29 2.4.2.4 Step 5 Suppression Duration
30 2.4.2.4 Step 6 Suppression Reinitiation
31 2.4.2.4 Step 7 Recovery After Suppression
34 2.4.2.5 Step 3 Pulse Level Tolerances (ATCRBS)
36 2.4.2.5 Step 5 Pulse Duration Tolerances (ATCRBS)
41 2.4.2.5 Step 10 Simultaneous Interrogations
42 2.4.2.6 Step 1 ATCRBS Single Pulse Desensitization

and Recovery
44 2.4.2.8 Undesired Replies
55 Not from MOPS Suppression Test

CALLING THE SEO EDITOR. In order to run the Test Sequence File
editor, enter "seq" at the VERSAdos prompt. The display will
appear as in figure 18. The first display in the test sequence editor
is the file access screen. At this point the user may read an
existing file, write to a file whether it exists or not, or exit the
program. The read/write function is switched using the space-bar key.
The function key F5 will exit the program.

READING FILES. The user may accept the default file name "TSTSEQ"
by entering a carriage return or enter a file name of his choice
followed by a carriage return. In either case, if the file exists,
the screen will display the contents of the file as shown in the
example display in figure 19. If the file does not exist, a blank
edit screen similar to the one shown in figure 20 will be displayed.

DATAS TEST SEQUENCE FILE EDITOR

ENTER FILE NAME: STDSEQ
READ FILE

 (SPACE BAR TO CHANGE)

 F5-EXIT

FIGURE 18. SEQ DISPLAY #1 FILE ACCESS

25

DATAS TEST SEQUENCE FILE: STDSEQ

1 2 2.4.2.1 Step 2 - Sensitivity
2 3 2.4.2.1 Step 3 - ATCRBS Dynamic Range
3 9 2.4.2.2.1 - Reply Transmission Frequency
4 10 2.4.2.2.2 Step 1 - ATCRBS Power Output

 F5-PAGE F6-PRINT F7-EXIT F8-ENTER TEST MATRIX|

FIGURE 19. SEQ DISPLAY #2 EXAMPLE FILE DISPLAY

26

 DATAS TEST SEQUENCE FILE: STDSEQ

SEQUENCE # 0 1 2 3 4 5 6 7 8 9
 _

_  23 9 10 [_] 
1_  
2_  
3_  
4_  
5_  
6_  
7_  
8_  
9_  

 _
TEST NUMBER _

 SEQUENCE NUMBER 5

F5-INSERT F6-REPLACE F7-DELETE/ALL F8-LIST TESTS F9-EXIT

FIGURE 20. SEQ DISPLAY #4 EDIT SCREEN

Figure 19 shows an example display of the contents of a test sequence
file named "STDSEQ." The file will cause the transponder test
program to run the following four transponder tests: test 2 -
Sensitivity, test 3 - ATCRBS Dynamic Range, test 9 - Reply
Transmission Frequency, and test 10 - ATCRBS Power Output. The
decimal numbers refer to the MOPS section which defines the test.

The F5 key will page through the list of tests if there is more than
one screen is able to display. The F6 key will send a complete list
of the tests in the file to the system printer. The F7 key will
return to display #1, the file access screen. The F8 key will advance
to the edit screen.

EDITING FILES. Figure 20 shows the test matrix screen where the
actual file editing takes place. The file name is displayed at the
top of the screen. In this example the file name is "STDSEQ."

There is a 10x10 matrix which shows the 99 possible test numbers in
their sequential order. There is a cursor within the matrix which
highlights the current sequence position. In the example it is in
sequence order 5 since this is the next available sequence position.
The screen entry cursor can be moved between two prompts using the
arrow keys: the "TEST NUMBER" prompt and the "SEQUENCE NUMBER"
prompt. The "TEST NUMBER" prompt is where the actual test numbers are
entered and stored in the position determined by the number in the
"SEQUENCE NUMBER" prompt. The user may change the sequence number to

27

allow insertions and changes to the file. When a test number is
entered the program will automatically advance to the next sequence
number. The sequence number cannot be advanced beyond the location
following the last test number.

The F5 and F6 keys are used for "INSERT" and "REPLACE" modes,
respectively. When the insert mode is selected, any test numbers
entered will be stored at the current sequence number position and
any following test numbers will be advanced one position. When the
replace mode is selected the test number at the current sequence
number position will be replaced by the new one entered.

The F7 key is used for deleting tests from the sequence. If the F7
key is pressed, the test at the current sequence number will be
deleted. If SHIFT F7 is pressed, all of the tests in the file will be
deleted.

The F8 key is used to display a list of available tests. An example
display is shown in figure 21.

The F9 key will exit the screen and advance to the file access screen
where the file may be stored.

Figure 21 shows an example of a display of all available transponder
tests. The F5 key is used to page through the list and the F6 key is
used to print a copy of the list. F7 will return to the edit screen.

WRITING FILES. If the user wants to save the current test sequence
file, he must write the file to the disk. The file access screen
screen is used to write files to the disk (figure 22). He may accept
the default file name or type in any valid file name followed by a
carriage return. If the file does not already exist it will be
written to the disk and the prompt will switch to read the file. If
the file already exists, the user will be warned and will have the
option to either name it something else or replace it with the
current file. To exit the editor enter the F5 key. Note: If the F5
key is pressed before the file is written to the disk, the file will
not be stored.

DATAS TRANSPONDER TESTS

 2 2.4.2.1 Step 2 - Sensitivity
 3 2.4.2.1 Step 3 - ATCRBS Dynamic Range
 9 2.4.2.2.1 - Reply Transmission Frequency
10 2.4.2.2.2 Step 1 - ATCRBS Power Output
17 2.4.2.2.5 Step 1 - Determination of reply rate limit
19 2.4.2.3.1 Step 1 - ATCRBS Reply Pulse Spacing

28

20 2.4.2.3.1 Step 2 - ATCRBS Reply Pulse Shape
22 2.4.2.3.2 Step 1 - Reply Delay
25 2.4.2.4 Step 1 - SLS Decoding
27 2.4.2.4 Step 3 - SLS Pulse Ratio
29 2.4.2.4 Step 5 - Suppression Duration
30 2.4.2.4 Step 6 - Suppression Reinitiation
31 2.4.2.4 Step 7 - Recovery After Suppression
34 2.4.2.5 Step 3 - Pulse Level Tolerances (ATCRBS)
36 2.4.2.5 Step 5 - Pulse Duration Tolerances (ATCRBS)
41 2.4.2.5 Step 10 - Simultaneous Interrogations

 F5-PAGE F6-PRINT F7-EXIT

FIGURE 21. SEQ DISPLAY #3 TEST LIST

DATAS TEST SEQUENCE FILE EDITOR

ENTER FILE NAME: STDSEQ
WRITE FILE

 (SPACE BAR TO CHANGE)

F5-EXIT

FIGURE 22. SEQ DISPLAY #1 FILE ACCESS IN WRITE MODE

BIBLIOGRAPHY:

Baker, John L., Philip N. McCabe, Kenneth V. Byram, Journal of ATC,
October - December 1985.

Federal Aviation Administration, National Airspace System Plan,
September 1989.

29

Radio Technical Commission for Aeronautics, Minimum Operational
Performance Standards for Traffic Control Radar Beacon System/Mode
Select (ATCRBS/Mode S) Airborne Equipment, March 1983.

A-1

APPENDIX A

ATCRBS FIELD TEST FUNCTIONS

GENERAL DESCRIPTION

The Air Traffic Control Radar Beacon System (ATCRBS) Field Executive
program is the actual transponder testing program. It is a menu-
driven multiscreen program that gives the user complete control over
his testing environment. The major subfunctions of the program are:
calibration of the coupling loss, control of individual as well as
global test parameters, display of individual transponder test
results summaries, control of the personal computer (PC) subsystem
interface, and execution of the transponder tests.

SOURCE FILES.

INCLUDE FILES (.h). The following is a list of the include files
used by the functions of the ATCRBS field executive program and a
brief description of their contents:

300.include.calib.h - definitions related to system calibration.
Includes the calibration file names and file structure definitions.

300.include.dataloc.h - definitions for the storage locations for the
three transmit control channels.

decode.h - definitions for the hardware decoder addresses and
structures to store the decoder information.

300.include.displib.h - definitions for WYSE terminal display
attributes and escape sequences.

idle.h - contains the idle loop interrogation definition.

300.include.mmap.h - definitions for the memory locations of the
DATAS hardware.

parminit.h - declaration and initialization of all transponder test
parameters.

parmlib.h - definitions used by the parameter modification programs.

pcinc.h - definitions used for PC-68020 communications.
Communication control and buffer structure definitions.

seqflib.h - definitions related to the test sequence file.

300.Include.stdlib.h - standard library provides common definitions
such as TRUE, FALSE, etc.

testdef.h - function array definitions for the ATCRBS
transponder tests.

C-2

tstinc.h - common transponder testing library.

SOURCE FILES (.cc) - The afexec program may be linked by running the
command file afexec.cf. A cross reference between function names and
file names follows:

Major functions are displayed in bold print.
Aftsts()
aftst[x]()
bldmenu()
calread()
chk_channels()
chk_dflt()
chk_level()
chk_name()
ck_format()
ck_range()
ck_resolu()
clk_set()
clk_sp()
clk_strt()
cnt_pulses()
convt_ans()
count_pulses()
curpos()
dbfile()
dfname()
d_fun_keys()
erase()
extrct_data()
fatal()
fatal_error()
funct[x]()
gen_action()
gen_atten()
gen_pattern()
gen_pulse()
gen_time()
gen_transm()
get_decl()
get_input()
getmtl()
getsd()
getyorn()

aftsts.cc
aftst[x].cc
bldmenu.cc
calread.cc
wf2chann.cc
parmscrn.cc
chklev.cc
chkname.cc
chkformt.cc
chkrange.cc
chkresol.cc
timer.cc
timer.cc
timer.cc
repulse.cc
convtans.cc
wf2count.cc
disputil.cc
aftsts.cc
dfname.cc
tstdrvr.cc
disputil.cc
repulse.cc
pcinit.cc
ferror.cc
chkformt.cc
wf2acti.cc
wf2atte.cc
wf2patt.cc
wf2puls.cc
wf2time.cc
wf2transm.cc
disputil.cc
disputil.cc
getmtl.cc
getsd.cc
disputil.cc

hwinit() interference()
int_err()
int_loop()
main()
mdec_acr()
mparms()
mtl_fun()
parmscrn()
pcinit()

hwinit.cc
intfer.cc
wfmod.cc
intlp.cc
afexec.cc mdecode.cc
mparms.cc
getmtl.cc parmscrn.cc
pcinit.cc plotdat.cc
sumscrn.cc sumscrn.cc

A-3

plotdat()
plotmsg()
plotque()
pmsg()
pr_head()
prt_init() pw_thresh()
odatf()
rddat()
rds_file()
read_seqf_file()
rep_test()
repulse()
set_dflt()
setfreq()
set_idle()
setlev()
setscroll()
spandd()
stcenter() store_ans()
store_ptr() suc_apprx()
sum[x]()
sumdat()
summenu()
sumscrn()
toupper()
tstdrvr()
tstseq()
vfcreat2()
vfopen()
wfmod()
wrtdat()

pmsg.cc
prhead.cc
print.cc pwthresh.cc
odatf.cc
sumdat.cc rdsfile.cc
sfread.cc reptest.cc
repulse.cc
parmscrn.cc
setfreq.cc setidle.cc
setlev.cc disputil.cc
spandd.cc disputil.cc
storeans.cc
storeans.cc
sapx.cc
sum[x].cc
sumdat.cc summenu.cc
sumscrn() disputil.cc
tstdrvr.cc tstseq.cc
vfcreat2.cc vfopen.cc
wfmod.cc
wrtdat.cc

Figure A-1 shows a hierarchical relationship between the more
important functions within the transponder test program. These and
all of the functions written for use with the transponder test
programs are contained in this appendix.

C-4

FIGURE A-1. MAJOR FUNCTION RELATIONSHIPS

aftsts()
NAME

aftsts - ATCRBS field testing options menu. Source file-
aftsts.cc.

FUNCTION CALL
aftsts().

GLOBAL VARIABLES
The following are global variables that are used throughout the

program that are declared in aftsts.cc.

int i_power - Interrogation power level.
int p_mode = 0 - Interrogation power mode, default is
"MANUAL" (0), other choice is "AUTOMATIC" (1).
int ps_mode = NO - Hardcopy flag, indicates whether or not to
automatically print a summary of the test results.
Default is "NO" (0), other choice is "YES" (1).

aftsts ()

main ()

tstdrvr()

tstseq()

aftst[x] ()

sum[x] ()

sumdat() plotdat()

sumscrn()

summenu() mparms()

parmscrn()

coupling

loss

function

(future)

A-5

int store = YES - Flag to indicate whether or not to store
the test data on disk. Default is "YES" (1), other choice is
"NO" (0).

DESCRIPTION
This function permits the user to select various options to

control how the system will function when running transponder tests.
The options included are: hardcopy of test results or not;
interrogation power mode--whether it is manual or automatic adjust;
initial power level; test sequence file name; whether or not to store
data on disk, and if so, the database file name.

DETAILED DESCRIPTION
The function builds the display, maintains an error array

(e_flg[]) that indicates error conditions in menu options, and calls
the function dbfile() to open data and key files. If there is an
error condition for a prompt, there is an indication next to the
prompt. When the user selects the prompt with the error condition the
error is explained at the bottom of the screen. The program then
waits for input from the user. If F5 is entered the data files and
key files are closed and the program returns. If F6 is entered the
program advances to the test function. Arrow keys will select between
options. ASCII characters are accepted as input as file names or
switches for flags.

aftst*()
NAME

aftst* - ATCRBS field test number *. Source file-
aftst*.cc.

FUNCTION CALL
aftst*(t_data, best_power, best_delay, p_data_loc)
struct data_share *t_data; /* Test data */
int *best_power; /* Best power measured */
int *best_delay; /* Best delay measured */
struct data_destination p_data_loc; /* Hardware addrs. */

GLOBAL VARIABLES
The following variables must be declared external to most ATCRBS

field test functions:
struct INT_TYPE int_cur[] - Current interrogation
parameters.
struct TST_TYPE tst_cur - Current test parameters.
struct CAL_TYPE calib - Calibration tables.
int i_afloss - Airframe loss.
int i_Power - Default interrogation power.
int_tx_Port - Transmitter port in use.

DESCRIPTION
This represents the calling structure of a typical ATCRBS field

test function. The ATCRBS tests are described in detail in appendix
C. The test results are stored in the structure "t_data." The

C-6

highest reply power measured during the test are returned in the
variable "best_power." The lowest reply delay is returned in the
variable "best_delay." "p_data_loc" provides the addresses of the
hardware locations to store the interrogation waveforms.

bldmenu()
NAME

bldmenu - Build menu for terminal screen. Source file-
bldmenu.cc.

FUNCTION CALL
bldmenu(parm_io, prmt_ord, prmt_flg, strc_indx, prmt_cnt,
prm_ques, spaceb)
struct PARM_IO_TYPE *parm_io; /* Parameter IO structs */
int prmt_ord[]; /* Array of prompt order */
int prmt_flg[]; /* Prompt flags */
int strc_indx; /* Index of struct */
int prmt_cnt; /* Number of prompts */
char *prm_ques[] /* Prompt questions */
char *spaceb[]; /* Spacebar answers */

DESCRIPTION
This function is used to set the order of the test or

interrogation parameters for display on the screen. The parameters
are displayed as question and answer and they are positioned in two
columns on the screen when possible. The main value of this function
is to accommodate parameters that require more than half of the
screen and, therefore, must be displayed on a screen row by
themselves.

DETAILED DESCRIPTION
The variable "prmt_cnt" is used to determine how many prompts to

position on the screen. The pointer "*parm_io" is the location of
the actual prompts. The array "prmt_ord[]" will contain the order
number to display each prompt, a -1 indicates an unused position. The
array "prmt_flg[]" will contain "TRUE" for all prompts that are used
and "FALSE" for those that aren't. For each prompt the question and
answer lengths are combined to determine the overall length. If the
length is greater than half the screen it must be positioned on the
left side, and the adjacent right side must be made unavailable. The
function will return a success condition (0) if all prompts can be
displayed, or a fail condition (1) if there is not room for all
prompts on the screen.

calread()
NAME

calread - Calibration file read function. Source file-
calread.cc.

FUNCTION CALL
 calread(calib, mode)
 struct CAL_TYPE *calib; /* Pointer to calibration

parameters */

A-7

 int mode; /* Read mode */

DESCRIPTION
This function opens and reads the calibration file that is

selected by the variable "mode." The include file "calib.h" must be
included for #defines for the mode as well as file names and
calibration structures. The possible modes are: MTF, CTF, MCF, and
CCF for Master Table File, Current Table File, Master Coupling File,
and Current Coupling File.

chk_channels()
NAME

chk channels - Check channels. Source file - wf2chan.cc.

FUNCTION CALL
chk_channels(p_wfm_def, p_maxl, p_max2, p_max3)
struct wave_parm *p_wfm_def; /* Waveform struct */
int *p_maxl; /* Locations used ch. 1 */
int *p_max2; /* Locations used ch. 2 */
int *p_max3; /* Locations used ch. 3 */

DESCRIPTION
This function determines the number of waveform events used in each
of the three channels. The end of a series of events must be flagged
in the waveform structure with a zero stored in the channel member.

chk_level()
NAME

chk_level - Check for valid interrogation power level.
Source file - chklev.cc.

FUNCTION CALL
chk level(p_level, port, atten)
int p_ievel, /* Power level */
int port; /* Interrogation port (0-2) */
int atten; /* Attenuator selected (0-2) */

DESCRIPTION
This function is used to check if a desired power level can be

achieved. The function will subtract coupling loss and airframe loss
from the desired interrogation level and test if the transmitter can
maintain that level at the calibration point. If the level is too
high "P_TOO_HI" is returned, if it is too low "P_TOO_LO" is returned,
otherwise "SUCCESS" is returned. The ;n~ de files "calib.h" and
"stdlib.h" are used in this function.

chk_name()
NAME

hk name - Check file name. Source file chkname.cc.

C-8

FUNCTION CALL
 chk name(filename, count)
 char *filename; /* Filename to check */
 int count; /* Number of characters */

DESCRIPTION
Tests a character string to see if it is a valid VERSAdos file

name.

DETAILED DESCRIPTION
The purpose of this function is to test for a valid filename

before it is combined with user number and catalog, etc., for file
open. The name is stored in the character string "filename" and the
length of the string is passed in the variable "count." The first
character is tested to be an alphabetic character and the following
characters are tested to be either alphabetic or numeric. If either
of these conditions are violated, a "1" is returned to indicate
illegal characters. If count is greater than eight, a "2" is returned
to indicate the file name is too long. If the file name is valid, the
function returns a "0."

ck_format()
NAME

ck_format - Check input format. Source file - chkformt.cc.

FUNCTION CALL
 ck_format(p in_data, parm_io)
 char *p_in_data; /* Pointer to input data */
 struct PARM_IO_TYPE *parm_io; /* Parameter IO structure*/

DESCRIPTION
This function will test a character string to see if it is in a

predefined format. The character string is passed in the variable
"p_in_data" and the format is defined in the structure "parm_io."
There are seven possible formats to test, which are #defined in
tstlib.h. If the string is in the correct format, a success condition
is returned (0); if it is in an incorrect format, an error condition
which is defined in "parmlib.h" is returned. The possible formats
are: decimal, binary, octal, hexadecimal, character, real, and
undefined (for expansion purposes).

ck_range()
NAME

ck_range - Check that a test parameter is within a valid range.
Source file - chkrange.cc.

FUNCTION CALL
k_range(parm_io, temp_ans)
struct PARM_IO_TYPE *parm_io; /* Parameter IO structure*/
long temp_ans; /* Parameter value */

DESCRIPTION

A-9

This function will test that a long variable "temp_ans" is within
its valid range. This is used in conjunction with the test parameter
modification routines. The range of the variable is defined in the
structure "parm_io" (parm_io->min and parm_io->max).

ck_resolu()
NAME

ck_resolu - Check that a test parameter is at a valid resolution
value. Source file - chkresol.cc.

FUNCTION CALL
ck_resolu(parm_io, temp_ans)
struct PARM_IO_TYPE *parm_io; /* Parameter IO structure*/ lonq

temp ans; /* Parameter value */

DESCRIPTION
This function will test that a long variable "temp_ans" is at the

proper resolution. This is used in conjunction with the test
parameter modification routines. The resolution of the variable is
defined in the structure "parm_io" (parm_io->res). The function uses
the MOD function to test for the proper resolution.

clk_set()
NAME

clk set - Clock set function. Source file - timer.cc.

FUNCTION CALL
clk_set(nm_ticks)
long nm ticks; /* Number of ticks for interrupt*/

DESCRIPTION
Utilizes on board timer. Timer rate is based on 2 megahertz (MHz)

clock rate. "nm_ticks" is the number of microseconds between
interrupts.

clk_sp()
NAME

clk sp - Clock stop function. Source file - timer.cc.

FUNCTION CALL
 clk sp()

DESCRIPTION
Stops the on board timer and disables interrupts.

clk_strt()
NAME

clk strt - Clock start function. Source file - timer.cc.

FUNCTION CALL
 clk_strt()

C-10

DESCRIPTION
Starts the on board timer and enables interrupts. The timer

interrupts occur at the rate established via call to "clk_set."

cnt_pulses()
NAME

cnt_pulses - Count reply pulses. Source file - repulse.cc.

FUNCTION CALL
 cnt_pulses()

DESCRIPTION
This function will return the number of reply pulses indicated by

the raw status word.

convt_ans()
NAME

convt_ans - Convert and display a test parameter. Source file -
convtans.cc.

FUNCTION CALL
 convt_ans(parm_io, spaceb)
 struct PARM_IO_TYPE *parm_io; /* Parameter IO structure*/
 char *spaceb[]; /* Space bar answers */

DESCRIPTION
This function will display a parameter which is stored in the

parameter structure (*parm_io->p_cur) as a character string in its
proper format on the display screen.

count pulses()
NAME

count_pulses - Count interrogation pulses (events). Source file
- wf2coun.cc.

FUNCTION CALL
count_pulses(p_wfm_def, p_countl, p_count2, p_count3)
struct wave_parm *p_wfm_def; /* Waveform struct*/
int *p_countl; /* Count for ch. 1 */
int *p_count2; /* Count for ch. 2 */
int *p_count3; /* Count for ch. 3 */

DESCRIPTION
This function will count the number of pulse lead-edges and

trail-edges for each of the three channels. The end of a channel is
determined when the channel member contains a zero.

curpos()
NAME

curpos - Cursor position. Source file - curpos.cc.

A-11

FUNCTION CALL
 curpos(ro, co)
 int ro; /* Screen row */
 int co: /* Screen column */

DESCRIPTION
This function will position the cursor at the specified row and

column on a wyse 75 compatible terminal.

dbfile()
NAME

dbfile - Data file access function. Source file - aftsts.cc.

FUNCTION CALL
dbfile(cur_ques, df_lun, kf_lun, dfd, kfd)

 int cur_ques; /* Current question number*/
 char *df_lun; /* Data file LUN */
 char *kf_lun; /* Key file LUN */
 int *dfd, /* Data file descriptor */
 int *kfd: /* Key file descriptor */

DESCRIPTION
This function provides access to the data and key files, and

displays the status of these files to the user at the data file
extension prompt on the screen displayed by aftsts(). This function
was designed to work with the function aftsts().

DETAILED DESCRIPTION
Displays the answer to the store option (YES or NO). If the

current question is the store option, the answer will be in reverse
video. The data file extension prompt and answer is then erased. If
the store option is YES, the prompt and answer are redisplayed. The
file is opened with a call to odatf(). The file status will be
displayed next to the file extension prompt. The file status
possibilities are: the file already exists, the file is new, or there
was an error in the file open.

dfname()
NAME

dfname - Create data file name. Source file - dfname.cc.

FUNCTION CALL
dfname(f_str, f_type, f_date, s_loc_id)
char *f_str; /* File name string */
int f_type; /* File type */
char *f_date; /* Date */
char *s_loc_id; /* Location Identifier */

DESCRIPTION
This function will create a file name from the location

identifier and the date for either the data file or the key file

C-12

depending on the "f_type" variable (f_type=1 - data file, else key
file). The location identifier is used as the catalog and the date is
part of the file name. Formats: "(s_loc_id).D(f_date)." for data file
and "(s_loc_id).K(f_date)." for key file.

d_fun keys()
NAME
 d fun keys - Define function keys. Source file - tstdrvr.cc.

FUNCTION CALL
 d_fun_keys(sys_status)
 char sys_status; /* System status */

DESCRIPTION
Will display the specific function keys and their action for the

"tstdrvr" function.

erase()
NAME

erase - Erase characters on the display. Source file-
erase.cc.

FUNCTION CALL
erase(n_chars)
int n_chars; /* Number of characters to erase*/

DESCRIPTION
Will erase n_chars characters starting at the current cursor

location. If n_chars is 0, will erase entire line from the cursor.

extrct data()
NAME

extrct data - Extract reply data. Source file - repulse.cc.

FUNCTION CALL
 extrct_data(pulse, p_addr)
 struct RAW_PULSE *pulse; /* Reply pulse data */
 unsiqned long *p_addr; /* Hardware address */

DESCRIPTION
This function is used to separate the various reply data for the

reply pulse at the address indicated by "p_addr." See the function
"repulse()" for more information.

fatal_error()
NAME

fatal error - Fatal error message. Source file - ferror.cc.

FUNCTION CALL
fatal error(err num, func_name)

A-13

int err_num; /* Error message number */
char *func_name; /* Name of function error occurred */

DESCRIPTION
Will display a message on the screen describing an unrecoverable

error that occurred in a function.

qen_action()
NAME

gen_action - Generate waveform action field. Source file-
wf2acti.cc.

FUNCTION CALL
gen_action(p_wfm_def, p_data_pnt)
struct wave_parm *p_wfm_def; /* Waveform struct */
unsiqned long p_data_pnt; /* Hardware address */

DESCRIPTION
This function will load the action field in its proper binary

format into the hardware waveform definition locations. Action fields
consist of items such as DELAY, PAM, PAM with SYNC PHASE etc.

gen_atten()
NAME

gen_atten - Generate waveform attenuator selection. Source file -
wf2atte.cc.

FUNCTION CALL
gen_atten(p_wfm_def, p_data_pnt)
struct wave_parm *p_wfm_def; /* Waveform struct */
unsiqned long p data_pnt; /* Hardware address */

DESCRIPTION
This function will load the attenuator selection into the proper

hardware waveform definition locations.

gen_pattern()
NAME

gen_pattern - Generate waveform pattern. Source file-wf2patt.cc.

FUNCTION CALL
 gen_pattern(p_wfm_def, p_data_loc, mode_s_offset)
 struct wave_parm *p_wfm_def; /* Waveform struct */

 struct data_destination *p_data_loc; /* Hardware locs.*/
 unsigned long mode_s_offset; /* Data block offset */

DESCRIPTION
This is the high level function for generating interrogation

waveforms in binary format from waveform structures.

C-14

DETAILED DESCRIPTION
This function first determines the number of pulse events and

stores this in "p_data_loc->num_of_pulses." This can be used later by
functions that need to modify the interrogation as it is stored in
hardware. For each of the channels, the waveform information is
encoded into its correct binary format and stored in the hardware
addresses determined by "p_data_loc." The variable "mode_s_offset"
is used to properly position the Mode S data block with respect to
the P6 pulse.
gen_pulse()
NAME

gen_pulse - Generate pulse fields. Source file-
wf2puls.cc.

FUNCTION CALL
gen_pulse(p_wfm_def, p_data_pnt)
struct wave_parm *p_wfm_def; /* Waveform struct*/
unsigned long *p_data_pnt; /* Hardware address */

DESCRIPTION
This function encodes the pulse information (lead-edge, trail-

edge, etc.) into the proper binary format required by the hardware.
The pulse information is stored in the waveform structure
"p_wfm_def."

gen_time()
NAME
gen time - Generate time field. Source file - wf2time.cc.

FUNCTION CALL
gen_time(p_wfm_def, p_data_pnt, p_strt_s_blk,
cal_blk_offset, p error)
struct wave_parm *p_wfm_def; /* Waveform struct*/
unsigned long *p_data_pnt; /* Hardware address */
unsigned int *p_strt_s_blk; /* Start of Mode S block */
unsigned long cal_blk_offset; /* Data block offset */
unsigned int *p_error; /* Position error */

DESCRIPTION
This function will encode the time delay values contained in the

waveform structure into the binary format used by the hardware. It
will automatically use more than one hardware address if the time
delay requires more than the maximum value provided by one location.

gen_transm()
NAME

gen_transm - Generate transmit field. Source file-
wf2tran.cc.

FUNCTION CALL
gen_transm(p_wfm_def, p_data_pnt)
struct wave_parm *p_wfm_def; /* Waveform struct */
unsigned long *p_data_pnt; /* Hardware address */

A-15

DESCRIPTION
This function encodes the transmit information into the proper

format required by the hardware.
get_decl()
NAME

get_decl - Get decimal numbers as input. Source file-
getdecl.cc.

FUNCTION CALL
get decl(p_data, row, col, max_in)
char *p_data; /* Pointer to input data */
int row; /* Current row position */
int col; /* Current column position */
int max_in; /* Max digits allowed */

DESCRIPTION
Accepts only numeric characters as input from keyboard.

DETAILED DESCRIPTION
This function is intended to be called only after the first

numeric character has been read in. Its purpose is to accept only
numeric characters (0 - 9) until a carriage return is entered, arrow
keys are entered, or the buffer is full. If any other characters are
entered they will be ignored except the backspace and delete keys,
which are recognized and will erase characters that were entered. The
input characters are stored in the array p_data up to the maximum
input length indicated in max_in. Row and Col are used to position
the echoed characters on the screen. This is a modified version of
get_dec(), it was updated to exit if an arrow key is entered.

get_input()
NAME

get_input() - Get keyboard input. Source file - getinl.cc

FUNCTION CALL
get input(p_data, count, row, col, mx_in, e_len, opt)
char *p_data; /* Pointer to input data */
int *count; /* # characters read in */
int row; /* Current row position */
int col; /* Current column position */
int mx_in; /* Max character input allowed */
int e_len; /* # characters to erase */
int opt; /* Option, 0 exit, 1 pause max */

DESCRIPTION
This is a general purpose function that filters only printable

characters from keyboard input and echoes them on screen and stores
them in a fixed length buffer.

DETAILED DESCRIPTION

C-16

This function is intended to be called only after the first
character has been read in. Its purpose is to test this character and
test and accept any following characters until the buffer is full or
a carriage return is entered. If any invalid characters are entered
(not between ascii 0x20 and 0x7f) the function returns a "1" as an
error condition. If all characters are valid and a carriage return is
entered, the function will return a "0" as a success condition. The
backspace and delete keys are recognized and will erase characters
that were entered. The input characters are stored in the array
p_data up to the maximum input length indicated in mx_in. Row and Col
are used to position the echoed characters on the screen. Count will
contain the number of characters read in.

This is a modified version of get_input, it has the addition of
"e_len" which determines how many characters to erase before echoing
input, and "opt" which determines what to do if the maximum input is
exceeded. If opt is "0" the program will exit, if opt is "1" it will
pause.

getmtl()
NAME

getmtl - Acquire minimum transmit level (MTL) of transponder.
Source file - getmtl.cc.

FUNCTION CALL
getmtl(mtl, p_data_loc)
int *mtl; /* Minimum transmit level */
struct data_destination *p_data_loc; / * Hardware

locations */

DESCRIPTION
This function will determine the minimum RF signal level required

to produce a 90 percent reply efficiency. The measurement is made
with a standard Mode A interrogation using a successive approximation
algorithm.

DETAILED DESCRIPTION
This function requires the include files: tstlib.h, stdlib.h

mmap.h, and calib.h. It requires the external variables: struct
CAL_TYPE calib for access to the calibration tables, int i_afloss for
airframe loss, and tx_port for the current transmitter port in use.
It uses a standard Mode A interrogation with the reply window
adjusted for coupling time. The PRF used is 500.

A subfunction called mtl_fun() is included in the function to do
the actual interrogation algorithm. This function initially sets the
interrogation power to be -88 dBm, the power variation to 8 dBm, and
the number of interrogations to be 20. It will continuously
interrogate with a call to the function "suc_apprx()" until the
variation in power is down to 1 dB or the interrogation power is out
of range. If the transponder replies at least 90 percent, the
interrogation power is decreased by the power variation, if less than
90 percent, the power is increased by the power variation. Once the
transponder replies at least 90 percent to a series of
interrogations, the number of interrogations will be doubled for the
next run and the variation will be divided in half.

A-17

The measured MTL is returned in the variable "mtl" in dB * 10 .
* Potential improvement - The function returns the MTL in a pointer
variable, but it should also return a status to indicate if MTL was
found. i.e., if (was_90) return(SUCCESS).

getsd()
NAME

getsd - Acquire suppression duration of transponder. Source file
- getsd.cc.

FUNCTION CALL
getsd(sd, mode, p_data_loc)
long *sd; /* Suppression duration */
int mode; /* Interrogation mode, 0=A 1=C */
struct data destination *p_data_loc; / * Hardware

locations */

DESCRIPTION
This function will determine the suppression duration of the

transponder. Suppression duration is defined as the length of time
the transponder is suppressed following a P1-P2 suppression pair. The
measurement is made with a standard P1-P2 pair followed by a standard
interrogation. The interrogation mode is determined by the variable
"mode." If "mode" is a "0," Mode A is used, if it is a "1," Mode C is
used. The function varies the spacing between the Pl-P2 pair and the
interrogation using a successive approximation algorithm to find the
10 percent reply point.

DETAILED DESCRIPTION
This function requires the include files: tstlib.h, stdlib.h,

decode.h, mmap.h, and calib.h. It requires the external variables:
struct CAL_TYPE calib for access to the calibration tables, int
i_afloss for airframe loss, i_power for standard interrogation power,
and tx_port for the current transmitter port in use. It stores the
interrogation with the reply window adjusted for coupling time in
channel 1 and the P1-P2 pair in channel 2. The PRF used is 450 and
the frequency is 1030 MHz.

The function sets the interrogation power for both channels the
same as the standard interrogation level in the global variable
i_power. If it is unable to set the level of both channels the same,
it will abort. The initial spacing between the P1-P2 pair and the
interrogation is set to 50 microseconds, the spacing variation to 10
microseconds, and the number of interrogations to be 10. It will
continuously interrogate with a call to the function "suc_apprx()"
until the variation in spacing is down to 25 nanoseconds or the pulse
spacing is less than the spacing variation. If the transponder
replies at least 10 percent, the spacing is decreased by the spacing
variation, if less than 10 percent, the spacing is increased by the
spacing variation. Once the transponder replies less than 10 percent
to a series of interrogations, the number of interrogations will be
doubled for the next run and the variation will be divided in half.

The measured suppression duration is returned in the variable
"sd" in nanoseconds.

C-18

getyorn ()
NAME

getyorn - get "y" or "n" from the keyboard. Source file-
getyorn.cc.

FUNCTION CALL
getyorn();

DESCRIPTION
Waits indefinitely for a "y" or "n" from the keyboard. Lower case

and upper case are allowed. Returns a "1" if a "y" is entered,
returns a "0" if "n" is entered.

hwinit()
NAME

hwinit - Hardware initialization. Source file - hwinit.cc.

FUNCTION CALL
hwinit()

DESCRIPTION
This function initializes the important DATAS hardware locations.

It will reset the system clock, RF control, local oscillator is set
to 1030 MHz, the interrupt control is set to 0, the transmit
controller is set to stop all channels, the external output controls
are set, the threshold is set to minimum, and all decoder variables
are set.

interference()
NAME

interference - interference detection function. Source - intfer.
cc.

FUNCTION CALL
This function has not yet been developed.

int_err()
NAME

int_err - interrogation setup error message. Source file-
wfmod.cc.

FUNCTION CALL
 int_err(e_code, msg)
 int e_code; /* Error code */
 char *msg; /* Message string */

DESCRIPTION
This function will decode and form an error message describing

the error code returned from the function "wfmod()."

int_loop()
NAME

int_loop - Interroqation loop algorithm. Source file-intlp.cc.

A-19

FUNCTION CALL
int_loop(num_ints, reply, xmit_chan)
int num_ints; /* Number of interrogations*/
struct reply_format *reply; /* Reply information struct*/
int xmit chan; /* Transmit channels */

GLOBAL VARIABLES
 The following variables must be declared external to this
function:
 struct CAL_TYPE calib; /* Calibration tables */
 int i_afloss; /* Airframe loss */
 int tx_port; /* Current transmit port */

DESCRIPTION
This function is used as a general purpose transponder

interrogation algorithm. It is used by the transponder tests that
require only a percent reply or some other general reply information.
The function will send the number of interrogations defined in
"num_ints," run the transmit channels defined in "xmit_chan," and
store the reply information in the struct "reply."

DETAILED DESCRIPTION
The reply information supplied by the function is contained in a

data structure. The structure format of the "reply" struct is defined
in tstlib.h and provides the following information: reply-
>power.min - The lowest reply power of the last reply pulse (F2)
measured out of all replies. Is stored in dB's * 10. All
calibration offsets are added including airframe loss and receiver
coupling loss.

reply->power.mean - The mean reply power of the last reply pulse
(F2) measured in all replies. Is stored in dB's * 10.

All calibration offsets are added including airframe loss
and receiver coupling loss.
reply->power.max - The highest reply power of the last reply
pulse (F2) measured out of all replies. Is stored in dB's *
10. All calibration offsets are added including airframe
loss and receiver coupling loss.
reply->frequency.min - The lowest RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz.
reply->frequencv.mean - The mean RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz.
reply->frequency.max - The highest RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz.
reply->delay.min - The least reply delay measured out of all
replies. It is stored in nanoseconds. This is the delay from
the lead edge of the reply window. It assumes that the reply
window has been adjusted for coupling time.
reply->delay.mean - The mean reply delay measured out of
all replies. It is stored in nanoseconds. This is the delay
from the lead edge of the reply window. It assumes that the
reply window has been adjusted for coupling time.
reply->delay.max - The maximum reply delay measured out of

C-20

all replies. It is stored in nanoseconds. This is the delay
from the lead edge of the reply window. It assumes that the
reply window has been adjusted for coupling time.
reply->atcrbs_code - ATCRBS identification code (4096). This
code comes from the system reply decoder and is in whatever
format the decoder provides. In order for this variable to
be stored it must be the same for at least five consecutive
replies. If the code changes during the interrogation loop,
this variable will contain whatever the code was for the
latest five consecutive replies.
reply->stdev_pls_cnt - Standard deviation of reply pulses.
This is provided so that reply reliability can be determined.
reply->mean_pulse_count - Mean number of reply pulses per
interroqation.
reply->intfere_ratio - Ratio of replies that were rejected
because of interference to accepted replies. This is provided to
indicate data reliability.
reply->reply_cnt - Reply count. The number of replies
detected.

The variable "xmit_chans" determines from which channels to
transmit. Each bit position corresponds to a channel; a "1" means to
transmit and a "0" means not to transmit. There are currently three
channels in the system, meaning a total of three active bits (e.g.,
0x0005 means to transmit on channels 1 and 3). The timing must be set
for the channels prior to calling this function.

This function will start the system clock, but the PRF must be
set prior.

A status (integer) will be returned when the function terminates.
The following are return possibilities which are defined in tstlib.h:
T_ABORT (-1), PRF_ERROR (2), or T_PASS (0). A status of T ABORT will
be returned if the acceptable level of interference is exceeded.
PRF_ERROR will be returned if the system timer interrupt is already
set when it is first read at any time during the loop. T_PASS will be
returned in all other cases.

main()
NAME

main - Transponder field testing main function. Source file -
afexec.cc.

FUNCTION CALL
main()

GLOBAL VARIABLES
The following is a list of global variables that are used

throughout the afexec program. They are declared in afexec.cc.

char asq_buf[l00] - Asynchronous service queue buffer.
char date[9] - Current date.
char dat file[STR_LEN] - Data file name. STR_LEN is defined in

tstlib.h (24).
char df_ext[EXT_LEN+l] = ("AA") Data file extension. EXT_LEN

is defined in tstlib.h (2).
char f_date[9] - Current date in file format.

A-21

char key_file[STR_LEN] - Key file name.
char loc_id[LID_LEN + l] = ("UACY") - Location identifier. LID

LEN is defined in tstlib.h (4).
char seq_file[STR_LEN] = {“STDSEQ"} - Test sequence file name.
char tsknam[4] = ("AFEX"} - Task name used for asynchronous
service queues.
char util_buf[REP_BUF_LEN] - "REP_BUF_LEN" is defined in
tstlib.h (5000). This is a utility buffer intended to be used

as a general purpose array.
int hardcopy - Hardcopy flag.
int i_afloss - Airframe loss.
int pc_active - PC system active flag.
int pc_store - Flag to indicate if data should be stored in PC .
int plot - Plot mode flag.
int test_array[T_LIMIT] - Test array from test sequence file.

T_LIMIT is defined in tstlib.h (100).
int tx port = ANTENNA - Current transmission port in use.
ANTENNA is defined in calib.h.
long pc_buf_loc[BUF_CNT] - Array of PC buffer addresses.
BUF_CNT is defined in pcinc.h (10).
struct CAL_TYPE calib - Calibration tables.
struct seqf_head seq_data - Test sequence file header.

 parminit.h
Parminit.h is one of the most important files in the afexec

program. It contains definition and initialization of the global test
parameters, interrogation parameters, and structures that support
these parameters for all of the transponder tests. This file is
included in main() (afexec.cc), and any modifications to these
parameters, or any time a test is added, parminit.h must be updated
and afexec must be recompiled.

The major components of this include file are the current and
default test parameters, and the current and default interrogation
parameters. The test parameters are variables that control how the
test will operate (i.e., number of interrogations to run, etc.). Two
identical structures maintain the default test parameters, which can
only be changed with a program modification, and the current test
parameters, which are equated to the default values but may be
changed by the user at run time. The interrogation parameters control
the waveforms for the interrogations that are common to all tests
(i.e. Pl width, P1 to P3 spacing, etc.). There is a default structure
that can only be modified with a program change that stores the
initial value for all parameters. There is a current structure array
(one element for each test) that the user may change at run time. The
current parameters are stored in an array so that all tests may be
modified with one change if so desired.

These structs and their supporting structures that are defined in
parminit..h are defined below:

struct INT_TYPE int_cur[MAX_NM_TESTS]
struct INT_TYPE int_def - These are the interrogation parameter

structures for the current and default interrogation parameters
respectively. The structure format INT_TYPE is defined in tstlib.h
and has the following format:

#define NUM_PARMS 18
struct INT_TYPE

C-22

{
long parm[NUM_PARMS];

} ;
There are 18 parameters for each test. The current parameters are
stored in an array with enough elements for the number of existing
tests, "MAX_NM_TESTS" which is also defined in tstlib.h. At program
startup, the current interrogation parameter array is filled with the
values of the default interrogation for each member of the array.

struct TST_TYPE tst_cur
struct TST_TYPE tst_def - These are the test parameter structures

for the current and default test parameters respectively. The
structure format TST_TYPE is defined in tstlib.h and has the
following format:

struct TST_TYPE
{

struct T2_TYPE tst2;
struct T3_TYPE tst3;

-
-

struct TN TYPE tstN;
};

There is a substructure corresponding to each existing test.These
substructures are also defined in tstlib.h.

There exists a structure that governs the users ability to modify the
structures at run time. The purpose of this is to check the validity
of a parameter value that is entered by the user and to contain a
pointer to the parameter value. This structure definition is as
follows:

struct PARM_IO_TYPE int_io[]
struct PARM_IO_TYPE tst_io[]

The structure format PARM_IO_TYPE is defined in tstlib.h and has the
following format:

struct PARM_IO_TYPE
{

long *p_cur; /* Current value */
long *p_def; /* Default value */
long min; /* Minimum value */
long max; /* Maximum value */
long res; /* Resolution of value*/
int max_inp_char; /* Max input of chars */
int variabl_type; /* Variable type code */
int input_format; /* Input format code */
int ques_index; /* Index to question */

};
The interrogation parameter IO array (int_io[]) contains one
structure for each of the 18 parameters. Because there is an array of
these structures, the pointer to the interrogation for a particular
test can be loaded at run time. The test parameter IO array
(tst_io[]) contains one structure for each test parameter that
exists. The pointer to each parameter is stored in parminit.h
because they could not be found at run time. That is the reason for
the extensive initialization in parminit.h

A-23

Since the current test parameters may be modified by the user at
run time, the program has to be able to locate each parameter based
on the test number alone. To accomplish this, a lookup table is also
defined and initialized in parminit.h. The lookup table has the
following format:

int p_lkup[MAX_NM_TESTS][2] = {(0,0 },
(0,-1 },(0,2 },....... };

For each test there is two integer values; the first is the index
into the io_struct location and the second is the number of
parameters for that test.

DESCRIPTION
Initializes the system, reads in the calibration files, and

generates the first display screen. The menu selections for this
screen are: Location ID entry, Calibrate Coupling Loss, Run
Transponder Tests, Modify Test Interrogation Parameters, Run
Transponder Test Summaries, PC System Activation.

DETAILED DESCRIPTION
Calls hwinit() to set system hardware to starting point. Calls

prt_init() to initialize printer device. Allocates an asynchronous
service queue for event timing purposes. Acquires system date and
time. Calls calread() to read in calibration files. Builds the
display screen. If the PC system active flag is true, will attempt to
initialize the PC system by calling pc_init(). The function will
then wait for input from the keyboard. The F5 key will exit the
program, arrow keys will select different menu options (the current
menu option is displayed in reverse video), a carriage return will
execute the current menu option, and ASCII characters are accepted as
input for the location ID and to switch the PC option answers.

When a menu option is selected with a carriage return, the data
and key file names are created using the location ID and the system
date via a call to the function dfname().

The PC active flag can be switched using the space bar or any
other key. When it is switched on (YES), three additional prompts
will appear to allow the user to select what the PC system will do
with the data. The options include whether or not to display on the
PC screen, whether or not to produce a hardcopy, and whether or not
to store the data in the PC system. The global variables that contain
this information are: plot, hardcopy, and pc_store, respectively. The
global variable for the overall PC system is pc_active. Each of these
variables contain a "l" when active or a "0" when inactive accept for
the variable plot, which contains a "0" for inactive, a "1" for
active plot after the test is complete, and a "2" for active on-line
with the test.

mdec_acr()
NAME

mdec_acr - Multiple decode of ATCRBS replies. Source file-
mdecode.cc.

FUNCTION CALL
mdec_acr(p_a_status, p_a_data, max_dec, max_win)
struct MA_REP_STAT *p_a_status; /* Pointer to ATCRBS

reply status struct */

C-24

struct MA_REP_DATA *p_a_data; /* Pointer to ATCRBS
reply data struct */

int max_dec; /* # of decode data structs available*/
int max_win; /* # of reply windows allowed */

DESCRIPTION
This function will process the decoded reply data from the

hardware memory area. The decoded reply status will be stored in the
struct "p_a_status"; the decoded reply data will be stored in the
array of structs "p_a_data." The number of data structs available is
passed in the variable "max_dec." The function will return three
possible status conditions, "NO_REPLY" (1) if the decoder indicates
there was no reply, "DEC_ERROR" (-1) if there is an error in the
decoder data, or a "0" if there was a successful decode.

DETAILED DESCRIPTION
If the number of decodes indicated in hardware is "0," a no reply

status is returned. If the decode error word in hardware indicates a
fatal decode error, then a decode error status is returned.
Otherwise the decode information is stored in a status structure and
a reply data structure.

Relevant information regarding the decode data is stored in a
status structure called "p_a_status." The structure is of the type
"MA_REP_STAT" which is defined in decode.h. The following information
is stored in the decode status struct:

p_a_status->nm_replies - The total number of ATCRBS replies
decoded in all reply windows. Initialized to "0," this
variable is incremented with each occurrence of a time of arrival
(TOA) word where the decode type was ATCRBS.

p_a_status->nm_windows - The number of reply windows.
Initialized to 1, this variable is incremented with each occurrence
of an interim status word. It is assumed that there must have been
at least one reply window.

p_a_status->rep_w_map - This is a pointer variable that
contains the location of an array which will store the number of
replies in each window. The contents at the pointer is incremented
with each occurrence of a TOA and the pointer itself is incremented
with each occurrence of a interim status word.

p_a_status->d_error - Decode errors. This variable contains the
decode errors provided by the hardware status as well as errors that
occurred when checking through the decoded data. Each bit in the word
corresponds to an error. The following are errors from the hardware
errors at location EF824024:

Bit 0 - Decode 1 counter overflow
 1 - Decode 2 counter overflow
 2 - Decode 3 counter overflow
 3 - Decode 4 counter overflow
 4 - Decode 5 counter overflow
 5 - Decode 6 counter overflow
 6 - Decode 7 counter overflow
 7 - Decode 8 counter overflow
 8 - Total decode overflow
 9 - TIMLOSS-lost a time word
10 - ATCLOSS-lost ATCRBS data
11 - MSLOSS- lost Mode S data

A-25

12 - TOVFLO- Range counter overflow
The following are errors that can occur when checking the
decoded data:

Bit 13 - Missed decode data
14 - Illegal decode, decode not ATCRBS
15 - Reply window overflow
16 - Reply overflow, not enough data loc.

Information regarding each reply is stored in an array of structs
called "p_a_data." Each reply is stored in its own structure
element. If there are more replies than the array can hold, the error
bit 16 "Reply Overflow" is set in the error word. The structures are
of the type "MA_REP_DATA" which is defined in decode.h. The
following describes the contents of each data struct:

 p_a_data->a_time - The time field from the TOA word from
hardware.
 p_a_data->a_code - The code data from the Decode Status word
from hardware.
P a_data->wind_nm - The reply window that this data came from.

mparms().
NAME

mparms - Modify parameters. Source file - mparms.cc.

FUNCTION CALL
mparms()

GLOBAL VARIABLES
The following external variables are required by this function:
char *prm_ques[] - The array of parameter questions.
char *spaceb[] - The array of answers or space bar
selectable parameters.
struct INT_TYPE int_cur[] - The array of current interrogation

parameters.
struct INT_TYPE int_def - The structure of default
interrogation parameters.
struct TST_TYPE tst_cur - The structure of current test
parameters.
struct TST_TYPE tst_def - The structure of default test
parameters.
int p - lkup[] [2] - The lookup array for tne test parameters
locations.
struct PARM_IO_TYPE int_io[] - The array of user I/O
information for the interrogation parameters.
struct PARM_IO_TYPE tst_io - The user I/O information for the
test parameters.

DESCRIPTION
This is the main function for the parameter modification area of

the DATAS transponder testing program. It builds the screen that
prompts the user for the test number for which parameters to access.
It will accept only numeric characters as input for the test number
or the F5 function key to exit. If an invalid test number is entered,
an error message will be displayed. If a "0" is entered, it will
call the appropriate functions to modify the interrogation parameters

C-26

for all tests. Otherwise, it will call the function "parmscrn()" to
access the interrogation parameters and again to access the test
parameters. The function will then prompt again for another test
number. It will be active until the F5 key is entered.

There are two arrays that determine the position on the screen
for each parameter. The array "sp_sc" is for the interrogation
parameters, and the array "db_sp" is for the test parameters.

parmscrn()
NAME

parmscrn - parameter modification screen. Source file-
parmscrn.cc.

FUNCTION CALL
parmscrn(parm_io, index, num, prm_ques, mov_dir, title,
tl_row, tc, tst_num, int_cur, spaceb)
struct PARM_IO_TYPE *parm_io; /* Parameter IO info */
int index; /* Parm IO index (start) */
int num; /* Number of parameters */
char *prm_ques[]; /* Parameter questions */
int mov_dir[][2]; /* Prompt locations */
char *title[]; /* Title messages */
int tl_row[]; /* Location for titles */
int tc; /* Title count */
int tst_num; /* Test number */
struct INT_TYPE *int_cur; /* Interrogation parameters*/
char *spaceb[]; /* Space bar answers */

DESCRIPTION
This is the display function for the parameter modification

routines. It displays the parameters on the screen and allows the
user to change them. The user selects between parameters using the
arrow keys. The current parameter as well as those that have been set
to other than default are displayed in reverse video. The function
keys that are active are: F5 to exit, F6 to set all values displayed
to their default values, and F7 to set only the current parameter to
its default value.

DETAILED DESCRIPTION
The function will first determine the order and location of the

parameter prompts and answers with a call to the function "bldmenu."
If there is not enough room for all parameters the program will
terminate with a fatal error. The parameters and their prompts are
displayed on the screen with the parameters whose values are other
than default displayed in reverse video. If the current parameter is
one that is altered by entering the space bar key, an appropriate
message directing the user to do so is displayed on the screen.

The active function keys are F5 to exit, F6 to set all of the
parameters displayed to their default values, and F7 to set only the
current parameter to its default value. The arrow keys are used to
select between the parameters.

When an answer to a prompt is entered, it will be put through
several checks before it is accepted. Most of the checks are made
against constraints stored in the parameter IO struct. First the
format is checked with a call to the function "ck_format." If the

A-27

format is ok, the parameter string that was entered is converted into
its variable type. The value is then checked that it is in range with
a call to "ck_range." and that it is in the proper resolution with a
call to "ck_resolu." If there are any errors, the answer is rejected
and a message is displayed.

In the case of a spacebar parameter, the value is simply
incremented to the next value. If it is at the maximum value it is
simply returned to the starting value.

When the answer has been fully tested the actual parameter value
is replaced with the new value. If all test parameters are chanqed,
then it will update those of all tests.

pcinit()
NAME

pcinit - PC system initializer. Source file - pcinit.cc.

FUNCTION CALL
 pcinit(msg, pc_buf_loc)
 char *msg; /* Status message */
 long *pc_buf_loc; /* Array of PC data buffers */

GLOBAL VARIABLES
The following are external variables required by this function:
char asq_buf[l - Asynchronous service queue buffer.
char tsknam[] - Task name.

DESCRIPTION
This function will establish the communication link between the

68020 computer and the PC subsystem. It will store the location of
the communication buffers and attempt to bring the two systems to an
on-line state. A success (0) or fail (1) condition is returned and
if the initialization did fail, the variable "msg" will contain an
error message.

DETAILED DESCRIPTION
The include file "pcinc.h" is required by this function to

establish PC system addresses, relevant #defines, and communications
buffer structures. There are two primary goals of this function. The
first is to bring the 68020 and the PC to an on-line state, and the
second is to store the addresses of the PC data buffers into an
array.

The two systems are brought "on-line" through a mutual
handshaking process. The process is controlled by the 68020 system
which acts as the master system. The control information is stored in
a structure which contains the following fields:
 p_Pc_ctrl->h_id - Host identifier.
 p_pc_ctrl->h_state - Host state.

 pc-ctrl->pc-id - PC system identifier.
 p_Pc-ctrl->pc-state - PC state.
 p_pc_ctrl->mode - Operation mode.
 p_Pc_ctrl->buf_num - Number of buffers.
 p_pc_ctrl->block_addr - Entry block address.
 p_pc_ctrl->buf_addr - Buffer base address.

 p_pc_ctrl->buf_size[BUF_CNT] - Array of buffer sizes.

C-28

This structure is stored in the PC memory. When the PC system is
started, it will fill in the information that it is responsible for
including pc_id, pc_state, buf_num, block_addr, buf_addr, and
buf_size[]. The state of the two systems is then controlled by the
68020 system with the following scenario:

-Host state is off-line (h_state = S_OFFLINE (0))
-Host waits until PC state is equal to host state
-Host state is PC request (h_state = S_PC_REQ (1))
-Host waits until PC state is equal to host state
-Host state is on-line (h_state = S_ONLINE (2))
-Host waits until PC state is equal to host state

The time that the Host system will wait is controlled by the service
queue. If the PC does not respond in time or if any other failure
occurs, a message will be stored and the function will return a
failure condition.

Once the link is established, the array "pc_buf_loc" is filled
with the starting address of each of the PC buffers.

plotdat()
NAME

plotdat - Plot reply data on PC system. Source file-
plotdat.cc.

FUNCTION CALL
plotdat(test_data, b_hdr_in, entry_pos)
struct data_share *test_data; /* Test reply data */
struct BUF_HDR *b_hdr_in; /* Buffer header info */
int *entry_pos; /* Block entry position */

GLOBAL VARIABLES
The following external variables are required by this function:
long pc_buf_loc[l - Array of buffer addresses.
int pc_active - PC status 0=off 1=on.
int plot - Plot flag.
int hardcopy - Hardcopy flag.
int pc store - Store data flag.

DESCRIPTION
This function is used to transfer the results of a transponder

test to a buffer location in the PC system. The PC system is used to
represent the transponder test performance in graphic form. The data
can be sent there to be plotted on the screen, plotted on a hard
copy, stored in the PC memory, or any combination of all three.

DETAILED DESCRIPTION
In order for this function to work, the PC system/68020

communication link must have already been established. First, the
function will check that the pc_active flag is true, check that the
pc_id is correct, and check that the pc_state is on-line. If any of
these conditions are not met, a fail condition is returned.

Next, the function will have to find an available buffer that
will fit the transponder test data block. The data buffers are of
various sizes, therefore, the function will search for the smallest

A-29

one that will fit the test data. Since the last buffers are the
smallest and the first buffers are the largest, the search is done
from the last buffers to the first. If no buffers are available or
none that will fit the data are available, a buffers-full condition
is returned. Otherwise, the buffer header and the data are
transferred using the memcpy() function. The buffer header precedes
the data in each buffer and contains some important information. The
structure is described below:

b-hdr-out->bit.blk-tY~e - Data block type, 0=data 1=ASCII.
b_hdr_out->bit.store - Data store flag.
b_hdr_out->bit.hdcpY - Hardcopy flag.
b_hdr_out->bit.display - Display plot flag.
b_hdr_out->bit.link - 0=single buffer 1=multi-buffer.
b_hdr_out->bit.mode - 0=Block 1=itterative.
b_hdr_out->bit.flaq - 0=Buffer available, l=not available.
b_hdr_out->bit.buf_id - ID of next buffer (link=1).
b_hdr_out->test_num - Test number.
b_hdr_out->data_ct - Size of data.
b_hdr_out->point_ct - Number of points so far, if itterative
mode.

This buffer header information is supplied to this function, it is
not supplied by this function.

Once the data is transferred to the buffer, it is then required
that the entry is made known to the PC system by making an entry in
the buffer entry queue. The information in this queue is constantly
monitored by the PC and contains a flag indicating a used buffer as
well as the location of the buffer. If there are no positions
available in the queue, a buffers full status is returned .

Plotmsg ()
NAME

plotmsg - plot system status message. Source file-
sumscrn.cc.

FUNCTION CALL
 plotmsg(status, row)
 int status; /* Status code */
 int row: /* Display row */

DESCRIPTION
This function will display a message describing the status of the

PC system on the screen at the row provided.

plotque ()
NAME

plotque - Plot system queue. Source file - sumscrn.cc.

FUNCTION CALL
plotque(data, pc_buf_head, entry_pos)
struct data_share *data; /* Data to be plotted */
struct BUF_HDR *pc_buf_head; /* Buffer header info */
int *entry_pos; /* Block entry position */

DESCRIPTION

C-30

This function will periodically try to transfer data to the PC
plot system. If no buffers are available, a message will be displayed
and the function will wait until one becomes available or an escape
character is entered.

pmsq ()
 NAME

pmsg - Print error message. Source file - pmsg.cc.

FUNCTION CALL
 pmsg(e_code, str)
 int e_code; /* Error code */
 char *str; /* Error message array */

DESCRIPTION
This function will display an error message for each bit that is

set in the integer "e_code." Each bit position is tested and if it is
a "1" an error message indexed by the bit position will be displayed.

pr_head()
NAME

pr_head - Print header information. Source file - prhead.cc.

FUNCTION CALL
pr_head(hdrinfo, io_buf, num_lines)
struct HEADER *hdrinfo; /* Header information */
struct data_share *io_buf; /* Output buffer */
int *num lines; /* Number of lines used */

DESCRIPTION
This function formats and stores the transponder under test

header information into a buffer for display purposes. This function
is used by the summary programs to display unit under test
information with the test results. The header information includes
the aircraft ID, aircraft type, transponder type, and the comment
field.

Print ()
NAME

print - Send string to printer device. Source file-print.cc.

FUNCTION CALL
 print(s_ptr, nm_prt)
 char *s_ptr; /* String pointer */
 int nm_prt; /* Number of characters */

DESCRIPTION
This function will send the number of characters specified in

"nm_prt" from the string pointed to by "s_ptr" to the printer device.
The lwrite() function is used. The status of the lwrite is returned.

prt_init()
NAME

prt_init - Initialize printer device. Source file-print.cc.

A-31

FUNCTION CALL
prt init()

DESCRIPTION
This function will assign a Logical Unit Number to the printer

device. The lassign() function is used. The logical unit number is
stored in the global variable "plun." Currently, an escape sequence
is sent to initialize an HP Laser printer, but this may be temporary.
If the assign is successful a PASS condition is returned, otherwise,
a FAIL condition is returned.

pw_thresh()
NAME

pw_thresh - Pulse width threshold set function. Source file
- pwthresh.cc.

FUNCTION CALL
pw_thresh(p_data_loc)
struct data destination *p_data_loc; / * Hardware

locations */

DESCRIPTION
This function will set the pulse width measurement threshold to

the optimum level which is determined by the reply power level. The
value that must be stored in the hardware to set the level correctly
is stored in the calibration tables and can be referenced based on
the reply power.

This function will generate 100 Mode A interrogations in order to
find the mean reply power of the first reply pulse. If there are at
least 10 replies, the threshold will be set and a SUCCESS condition
is returned, otherwise, a FAIL condition is returned.

odatf()
NAME

odatf - Open data file. Source file - odatf.cc.

FUNCTION CALL
odatf(dat_file, df_ext, df_lun, dfd, key_file, kf_lun, kfd,

 new_file, crff)
char *dat_file; /* Data file name */
char *df_ext; /* Data file extension */
char *df_lun; /* Data file LUN */
int *dfd; /* Data file descriptor */
char *key_file; /* Key file name */
char *kf_lun; /* Key file LUN */
int *kfd, /* Key file descriptor */
char *new_file; /* New file flag */
int crff; /* Create file flag */

DESCRIPTION
This function is used to open a data file and key access file in

order to store the transponder test results. The function requires
both the data and key file names and extensions as inputs, and
provides file descriptors and logical unit numbers. The create file
flag (crff) will tell the function whether or not to create the files

C-32

if they do not exist. A crff of "0" means NO and "1" means YES. If
the file had already existed, the "new_file" flag will contain a "0,"
if the file had to be created, it will contain a "1."

rddat()
NAME

rddat - Read data. Source file - sumdat.cc.

FUNCTION CALL
rddat(lun, rrn, buf, pldt)
char lun; /* LUN of file */
long rrn; /* Record number */
struct data_share *buf; /* Data buffer */
long *pldt; /* Amount of data read */

DESCRIPTION
This function will read from the logical unit supplied the current
record "rrn" and store it in "buf." The number of bytes read is
stored in "pldt." It will return "0" for success, "-1" for end of
file, and terminates on VERSAdos errors.

rds_file()
NAME

rds file - Read DATAS file. Source file - rdsfile.cc.

FUNCTION CALL
rds_file(f_type, e_code)
int f_type, /* File type code (obsolete) */
int *e_code; /* Error code if occurred */

GLOBAL VARIABLES
The following are variables that must be declared external to

this function.
char seq_file[] - Sequence file name.
struct seqf_head seq_data - Sequence file header.
int test_array[] - Test sequence array.

DESCRIPTION
This function was originally intended to read a variety of file

types for the DATAS program. It has been reduced to performing the
read of test sequence files. It will read and store the sequence
file header and the test sequence. If it is successful, it will
return a "0," if the file does not exist, it will return a "1," if
there is an error in the file open or read, the error code will be
stored in e_code and a "2" will be returned.

read_seqf_file
NAME

read_seqf_file - read test sequence file. Source file-
sfread cc .

FUNCTION CALL
read_seqf_file(s_fil_data, test_array, fp)
struct seqf_head *s_fil_data; /* File header */
int test_array[]; /* Test # array */

A-33

char *fp; /* File LUN */

DESCRIPTION
Reads a test sequence file from disk given the logical unit

number of the file. The header information and the array of tests is
returned.

DETAILED DESCRIPTION
The file is first rewound. If an error occurs, the program will

exit with an error message. A lread() is used for all file reads.
First, the header is read into a temporary buffer. If an error occurs
the error code is returned in negative logic. The data is then
transferred from the temporary buffer into the header struct
"s_fil_data." The test numbers are then read in until the end of
file. The test numbers are stored in the format "struct test_type"
which is defined in this function. The test number field from this
struct is stored into the test array (test_array[]). The flag field
"flg" in the test struct is currently not used.

rep_test()
NAME

rep_test - Reply test. Source file - reptest.cc.

FUNCTION CALL
 rep_test(wfm, loc, lead_del)
 struct wave_parm *wfm; /* Waveform array */
 int loc; /* Waveform index for reply */
 long lead_del; /* Lead reply delay */

DESCRIPTION
This function is used to transmit a reply from channel 2 in order

to test transponder tests. It will modify an existing interrogation
structure array so precaution must be taken to make sure that the
original structure array is large enough to contain the added reply
pulse definitions. The reply is stored in channel 2 beginning at the
location "loc." The lead reply delay is set to the value contained in
"lead_del," which should normally be equal to all the time fields in
channel 1 up to the reply window. The function will also set the RF
unit to the diagnostic mode and set the channel 2 frequency to 1090
MHz.

rePulse ()
NAME

repulse - Reply pulse processor. Source file - repulse.cc.

FUNCTION CALL
 repulse(pulse, a_code)
 struct RAW_PULSE *pulse; /* Reply pulse information*/
 int a_code; /* ATCRBS code */

DESCRIPTION
This function will separate the raw reply data for each reply

pulse and store it in an array of structs. The struct array is
dimensioned as 16 structs, one for each possible reply pulse (al,

C-34

cl,etc...) including the framing pulses and the Special Position
Indicator (SPI). The indexes of the structs correspond directly to
the order of the pulses, 0=Fl, l=Al, etc.. The structure definition
and information is as follows:
 struct RAW PULSE

 {
int flg; 0=No pulse l=Pulse present
int le_time; time of pulse
int amp; amplitude of pulse
int freq; frequency of pulse
int width; width of pulse

I nt mp value mono-pulse value
}
The ATCRBS code in the reply data is used to separate the reply

pulses into their respective positions.
If the raw data status word shows an error condition or the

ATCRBS code and the number of pulses in the reply data disagree, this
function will return an error condition.

This function uses two subfunctions: extrct_data() to extract the
reply data for each pulse, and cnt_pulses to count the number of
reply pulses present.

setfreq()
NAME

setfreq - Set transmit frequency. Source file - setfreq.cc.

FUNCTION CALL
 setfreq(chan, freq)
 unsigned long chan; /* Channel address */
 long freq; /* Frequency in khz */

DESCRIPTION
This function will store the transmit frequency in Binary Coded

Decimal (BCD) format in the channel address provided.

set_idle()
NAME

set_idle - Set idle interrogation on or off. Source file-
setidle.cc.
FUNCTION CALL

set_idle(s_row, s_status, p_data_loc)
int s_row; /* System message row */
char s_status; /* System status */
struct data destination *p_data_loc; / * Hardware

 locations */

GLOBAL VARIABLES
The following variables must be declared external to this

function:
struct CAL_TYPE calib - Calibration tables.
int i_Power - Interrogation power.
int i_afloss - Airframe loss.

A-35

int tx_Port - Active transmitter port.

DESCRIPTION
Based on the current system status, this function will either

start or stop the idle interrogation. A message will be displayed on
the screen in the row indicated by "s_row" when the idle is turned on
or erased when the idle is turned off. The idle interrogation is
defined in the include file "idle.h."

setlev()
NAME

setlev - Set power level. Source file - setlev.cc.

FUNCTION CALL
setlev(level, chan, atten, atten_index)
int *level; /* Transmit power level */
int chan; /* Transmit channel */
int atten; /* Attenuator selected */
int atten_index; /* Attenuator index */

GLOBAL VARIABLES
The following variables must be declared external to this

function:
struct CAL_TYPE calib - Calibration tables.
int i afloss - Airframe loss.

DESCRIPTION
This function will attempt to set the transmit level of the

channel to the level desired. If the level is too high, the level
will be set to the maximum and "P_TOO_HI" will be returned. If the
level is too low the level will be set to the minimum and "P_TOO_LO"
will be returned. If the level is achievable a "SUCCESS" condition
is returned.
setscroll(~
NAME

setscroll - Set scrolling region. Source file - stscrol.cc.

FUNCTION CALL
setscroll(start, stop)
int start; /* Starting row */
int stop; /* Ending row */

DESCRIPTION
This function will define a scrolling region on a WYSE 75

compatible terminal between rows start and stop. To terminate a
scrolling region, call setscroll with start at 0, and stop at 24.

spandd()
NAME

spandd - Sensitivity, power, and delay measurement. Source file -
spandd.cc.

FUNCTION CALL
spandd(t_data, best_power, best_delay, p_data_loc)

C-36

struct data_share *t_data; /* Struct to pass back data */
int *best_power; /* Best power measured so far */
int *best_delay; /* Best delay measured so far */
struct data_destination *p_data_loc; /* Load addresses */

GLOBAL VARIABLES
The following variables must be declared external to this

function:
struct CAL_TYPE calib - Calibration tables.
int i_afloss - Airframe loss.
int tx_port - Active transmitter port.
int i power - Interrogation power.

DESCRIPTION
This function will constantly monitor the reply power,

sensitivity, and reply delay of the transponder under test. This is
used primarily to measure these parameters as the aircraft passes by
the main beam in order to find the optimum measurement at center
beam. It will transmit a standard Mode A interrogation at 200 PRF.
An F9 key entered will stop the function. The successive
approximation algorithm "sapx()" is used to measure the sensitivity,
and the interrogation loop algorithm "int_loop()" is used to measure
reply power and delay.

The current measurements are displayed on the screen along with
the best measurements so far, if any parameter improves, it will be
displayed in reverse video along with a message "increasing."

stcenter()
NAME
stcenter - String centering function. Source file- stcenter.cc.

FUNCTION CALL
 stcenter(str)
 char *str: /* String */

DESCRIPTION
This function will return a column position where the input

string "str" would be in the center of the display screen.

store_ans()
NAME
store_ans - Store parameter answer. Source file-
storeans.cc.

FUNCTION CALL
store_ans(p_inp_data, parm_io, dest)
char *p_inp_data; /* Parameter as entered from keyboard*/
struct PARM_IO_TYPE *parm_io; /* Parameter defines */ long

dest; /* Storage destination */

DESCRIPTION
This function will store the character string "p_inp_data" in the

location "dest" in the proper format which is defined in "parm_i-o."

A-37

store ptr()
NAME

store_ptr - Store pointer answer. Source file - storeans.cc.

FUNCTION CALL
store_ptr(parm_io, source)
struct PARM_IO_TYPE *parm_io; /* Parameter defines */ long

source; /* Source address of value*/

DESCRIPTION
This function will store from the location "source" into the

pointer variable in the "parm_io" struct.

suc_apprx()
NAME

suc_apprx - Successive approximation algorithm. Source file -
sapx.cc.

FUNCTION CALL
suc_apprx(rep_thresh, num_ints, reply, xmit_chan)
int rep_thresh; /* Reply threshold (usually 90%)*/
int num_ints; /* Number of interrogations */
struct reply_format *reply; /* Reply data */ int
xmit chan; /* Transmit channels */

GLOBAL VARIABLES
The following variables must be declared external to this

function:
struct CAL_TYPE calib - Calibration tables.
int i_afloss - Airframe loss.
int tx Port - Active transmitter port.

DESCRIPTION
This function is used to rapidly find a certain percent reply

point using the successive approximation algorithm. This is the
function that will generate the actual interrogations for the
algorithm. The intended number of interrogations is passed in the
variable "num_ints" and the function will interrogate until either
the number of replies are met to insure that the reply threshold is
met or the number of misses are encountered to indicate the reply
threshold can not be met. The function will run the transmit channels
defined in "xmit_chan," and store the reply information in the struct
"reply."

DETAILED DESCRIPTION
The reply information supplied by the function is contained in a

data structure. The structure format of the "reply" struct is defined
in tstlib.h and provides the following information: reply-
>power.min - The lowest reply power of the last reply pulse (F2)
measured out of all replies. Is stored in dB's * 10. All
calibration offsets are added including airframe loss and receiver
coupling loss.

C-38

reply->power.mean - The mean reply power of the last reply pulse
(F2) measured in all replies. Is stored in dB's * 10. All
calibration offsets are added including airframe loss and receiver
coupling loss.

reply->power.max - The highest reply power of the last reply
pulse (F2) measured out of all replies. Is stored in dB's * 10.

All calibration offsets are added including airframe loss and
receiver coupling loss.

reply->frequency.min - The lowest RF transmitter frequency of
the first reply pulse measured out of all replies. It is
stored in kHz.
reply->frequency.mean - The mean RF transmitter frequency of
the first reply pulse measured out of all replies. It is
stored in kHz.
reply->frequency.max - The highest RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz
reply->delay.min - The least reply delay measured out of all
replies. It is stored in nanoseconds. This is the delay from
the lead edge of the reply window. It assumes that the reply
window has been adjusted for coupling time.

reply->delav.mean - The mean reply delay measured out of
all replies. It is stored in nanoseconds. This is the delay
from the lead edge of the reply window. It assumes that the
reply window has been adjusted for coupling time.
reply->delav.max - The maximum reply delay measured out of
all replies. It is stored in nanoseconds. This is the delay
from the lead edge of the reply window. It assumes that the
reply window has been adjusted for coupling time.
reply->atcrbs_code - ATCRBS identification code (4096). This
code comes from the system reply decoder and is in whatever
format the decoder provides. In order for this variable to
be stored, it must be the same for at least five consecutive
replies. If the code changes during the interrogation loop,
this variable will contain whatever the code was for the
latest five consecutive replies.
reply->stdev-pls-cnt - Standard deviation of reply pulses.
This is provided so that reply reliability can be
determined.
reply->mean_pulse_count - Mean number of reply pulses per
interrogation.
reply->intfere_ratio - Ratio of replies that were rejected
because of interference to accepted replies. This is
provided to indicate data reliability.
reply->reply-cnt - Reply count. The number of replies
detected.

The variable "xmit_chans" determines from which channels to
transmit. Each bit position corresponds to a channel; a "1" means to
transmit and a "0" means not to transmit. There are currently three
channels in the system, meaning a total of three active bits (e.g.,
0x0005 means to transmit on channels 1 and 3). The timing must be set

A-39

for the channels prior to calling this function. This function will
start the system clock, but the PRF must be set prior.

A status (integer) will be returned when the function terminates.
The following are return possibilities which are defined in tstlib.h:
T_ABORT (-1), PRF_ERROR (2), T_FAIL (1), or T_PASS (0). A status of
T_ABORT will be returned if the acceptable level of interference is
exceeded. PRF_ERROR will be returned if the system timer interrupt is
already set when it is first read at any time during the loop. T_PASS
will be returned if the reply threshold is achieved. T_FAIL will be
returned if the reply threshold was not met.

sum* ()
NAME

sum* - Summary function for test *. Source file sum*.cc.

FUNCTION CALL
sum*(t data, io_buf, num_lines)
struct data_share *t_data; /* Test data */
struct data_share *io_buf; /* Output buffer */
int *num_lines; /* Number of lines */

DESCRIPTION
This represents a typical call to a test summary function. The

test summaries produce a brief description of the results of the
transponder for each test. The test data is passed to the function in
the structure "t_data." The summary for the test is returned in the
structure "io_buf" in ASCII format. The number of lines that the
summary message requires for the screen or printer ;s returned in
"num lines."

sumdat()
NAME

sumdat - Summarize transponder test data. Source file-
sumdat.cc.

FUNCTION CALL
sumdat(start_pnt, hdrinfo, io_dev, dflun, rrn, range,
line_array, head_rrn, head_sent)
int *start_pnt; /* Starting test # index */
struct HEADER *hdrinfo; /* Test header info */
int io_dev; /* Output device */
char df_lun; /* Data file LUN */
long *rrn; /* Current record # */
int range; /* Display- 0=LINE 1=PAGE */
int *line_array; /* # lines per test */
long head_rrn; /* Record # of header */
int head sent; /* Header sent flag */

DESCRIPTION
This function is the heart of the test summary function. It will

retrieve the test data from the data file, call the appropriate data
reduction function, and display the results on the screen or printer.

C-40

DETAILED DESCRIPTION
The page limit is set based on the output device chosen. The

defines for the screen and printer limits are in "sumdef.h."
The test data header information will be displayed if the

starting point is at the beginning (*start_pnt = 0) and a full page
is being displayed (range = l); or the header has not been sent
(head_sent = NO), a single line is being displayed (range = 0), and
the output device is the printer. "head_rrn" is used to locate the
header record in the file.

The test data will be displayed or printed until either all tests
have been displayed or the screen is full. The summary

functions sum* are called to reduce the data. These functions are in
a function array defined in "sumdef.h" and there is one for each
test. The current record "*rrn," the start location "*start_pnt,"
and the test line array "*line_array" are maintained to allow for
multiple pages. This function will reduce and display one line or one
page of test results only. It must be called again to display
following pages.

The function returns "0" if successful or "-1" if the end of file
is reached.

summenu()
NAME

summenu - Test summary menu. Source file - summenu.cc.

FUNCTION CALL
summenu()

DESCRIPTION
This function drives the initial screen for the transponder test

summary program. It prompts the user for the following information:
Location Identifier - location code for the site where the data was
collected, this is used as the file catalog; Date - date when the
data were collected, is used as part of the file name; Data file
extension - the extension for the data file; Summary mode - either
SINGLE or MULTIPLE (SINGLE will prompt for the aircraft ID to locate
a specific test result, MULTIPLE will prompt for an output device to
send all the test results collected at the location and date
entered).

The function key F5 will exit the function and F6 will start the
summary proqram.

sumscrn()
NAME

sumscrn - Test summary screen display. Source file-
sumscrn.cc.

FUNCTION CALL
sumscrn(df lun, rrn, s_mode)
char dflun; /* Data file LUN */
long rrn; /* Data file record number */
int s_mode; /* Summary mode - SINGLE or MULTIPLE*/

A-41

DESCRIPTION
his function will call the function "sumdat" to produce the test

summaries and headers on the screen. The center portion of the screen
will display the test summaries and the bottom will display several
function key options. One of the test summaries is highlighted and
may be selected using the arrow keys. The function keys perform the
following tasks: F5 - EXIT, will return to the previous screen; F6 -
PAGE, will display the next page of

results on the screen; F7 - PRINT LINE/ALL, will send the
highlighted line test summary and header to the printer; if SHIFT F7
is entered, will send all the test results from that target to the
printer; F8 - PLOT LINE/ALL, will send the test data and header data
to the PC plot system; if SHIFT F8 is entered, will send all
summaries from the target to the PC; F9 - NEXT, will advance to the
next aircraft's test result data block.

toupper()
NAME

toupper - convert alphabet characters to upper case. Source
file - toupper.cc.

FUNCTION CALL
 toupper(sptr)
 char *sptr; /* Character string pointer */

DESCRIPTION
Converts all alphabetic characters in the string "sptr" to upper

case. Terminates when a null character is reached.

tstdrvr()
NAME

tstdrvr - Test driver function. Source file - tstdrvr.cc.

FUNCTION CALL
 tstdrvr(dflun, kflun)
 char dflun; /* Data file LUN */
 char kflun: /* Key file LUN */

GLOBAL VARIABLES
The following variables must be declared external to this

function:
int p_mode - Power mode.
int ps_mode - Print summary mode.
int i_power - Interrogation power.
int store - Data store flag.
struct seaf_head seq_data - Test sequence file header.
int test_arrayrl - Test array.
char date[] - System date.
char loc_id[] - Location ID.
int i_afloss - Airframe loss.
struct CAL_TYPE calib - Calibration tables.
int tx_port - Transmitter port.

DESCRIPTION

C-42

This function controls the actual transponder field testing
process. It sets up the field testing display screen, displays entry
prompts for aircraft information, and provides function keys for
test control.

DETAILED DESCRIPTION
The entry prompts are initialized to be blanks or 0's before the

tests are run. The function will start the idle interrogation and
then wait for keyboard entry. The function keys that are active
depend on the status of the system, hence, the variable "sys_status."
The function "d_fun_keys" is called to define and display the active
function keys. Some of the more important function keys are as
follows: F5 will exit the function, F9 will start the test
sequence if it is not running and stop the sequence if it is running,
F10 is used to toggle the idle loop (start-idle, stop-idle), and
F7 will increase the interrogation power and F8 will decrease the
interrogation power if the interrogation power is under manual
control.

The function "tstseq()" is called to loop through the test
sequence when the user starts the ATCRBS field tests.

This function is responsible for storing the test data into the
data file. The function "wrtdat" is called to do so. The function
"sumscrn" is also called to display the test results on the screen.

tstseq()
NAME

tstseq - Test sequence function. Source file - tstseq.cc.

FUNCTION CALL
 tstseq(p_data_loc, s_msg_row, f_head)
 struct data_destination *p_data_loc; /* Hardware loc*/
 int s_msg_row; /* System message row */
 struct HEADER *f_head; /* Data file header struct*/

GLOBAL VARIABLES
The following variables must be declared external to this

function:
char util_buf r l - Utility buffer. A general purpose block
of memory used for large data transactions. Used by this
function to hold the transponder test results prior to disk
storage.
struct data_share r_data - Used to point to the transponder
test results data.
int test_array[l - Array of test numbers to run.
int store - Flag to indicate if the data should be stored on
disk or not.

DESCRIPTION
This function will loop through the test numbers in the array

"test_array" and call their corresponding ATCRBS test functions.
"p_data_loc" is passed the transponder tests to provide the hardware
locations for hardware control.

A-43

DETAILED DESCRIPTION
If the storage flag "store" is TRUE, a temporary file is opened

to store the test results as an intermediate step before the user
decides to store the test results in the actual data file. The
scrolling region on the display, that was defined in previous
functions, is cleared in order to display the status of the running
tests. The system status messages are displayed in the "s_msg_row" on
the screen. The function will then loop through each test stored in
the array until complete or stopped by the F9 key entered by the
user. Prior to calling the test sequence, the pulse width
measurement threshold is set to minimum. Each test number is checked
to see if it is valid and if the test exists. Each valid test is run
and the results are stored in the temporary file. As each test
completes, a status message is displayed on the screen. If the status
is valid, the best power and delay measured during the test is
displayed. When the test sequence completes, the reply power,
sensitivity, and delay are monitored continuously until the user ends
the test. The function that monitors these parameters is called
"spandd()." The temporary data file is closed when this function is
complete.

vfcreat()
NAME

vfcreat - VERSAdos file create. Source file - vfcreat.cc.

FUNCTION CALL
 vfcreat(vfname)
 char *vfname; /* File name */

DESCRIPTION
Creates a VERSAdos file and returns a logical unit number(char).

If there is an error, returns the VERSAdos error code in negative
logic. Uses lalloc().

vfopen()
NAME

vfopen - VERSAdos file open. Source file - vfopen.cc.

FUNCTION CALL
 vfopen(vfname)
 char *vfname; /* File name */

DESCRIPTION
Opens a VERSAdos file and returns a logical unit number(char). If

there is an error, returns the VERSAdos error code in negative logic.
Uses lassign().

wfmod()
NAME

wfmod - waveform modifier. Source file - wfmod.cc.

C-44

FUNCTION CALL
 wfmod(pulse_num, width, p_space, p_wfm)

int pulse_num; /* Pulse number */
long width; /* Pulse width */
long p_space; /* Pulse spacing */
struct wave_parm *p_wfm; /* Waveform struct */

DESCRIPTION
This function will modify a pulse while it is stored in the

waveform structure. This is primarily used to modify default
waveform patterns that have been changed by the user prior to
encoding them into the binary format used by the hardware.

The location of the pulse to be modified is found by searching
for the "pulse_num," the lead-edge of a PAM action field from the
starting address "p_wfm." If the pulse is not found in the struct, a
"1" is returned as an error condition.

The pulse spacing refers to the lead-edge of the chosen pulse. If
the chosen pulse is the first pulse in the waveform it simply stores
the "p_space" value as the lead-edge time of that pulse. If there are
other pulses preceding the chosen pulse, the spacing is from the
lead-edge of the previous pulse. The function will adjust for the
previous pulses width. If the width of the previous pulse is too wide
for the spacing selected, a "2" is returned as an error condition.

The pulse width is stored at the trail edge of the chosen pulse,
which must be at the next location in the struct or a "3" will be
returned as an error condition. The timing of any events following
the chosen pulse are adjusted accordingly with the new width of the
pulse.

If no error conditions occur, a "0" is returned. If error
conditions have occurred, the function "int_err()" can be called to
print a message describing the error.

wrtdatf)
NAME

wrtdat - write data file. Source file wrtdat.cc.

FUNCTION CALL
 wrtdat(hdrinfo, tfname, dflun, kflun, msgrow)
 struct HEADER *hdrinfo; /* Header information */

 char *tfname; /* Temp file name */
char dflun; /* Data file LUN */
char kflun; /* Key file LUN */
int msgrow; /* Message row */

DESCRIPTION
This function will store the test data in the database file and

the key file information in the key-access file.

DETAILED DESCRIPTION
The temporary data file "tfname" is the source of the transponder

test data. If the file open of the temp file fails, a fatal error
occurs. The data will be stored at the end of the data file. The
function uses the function "lposition" to locate the end of the file.

A-45

If the position is unsuccessful, a fatal error occurs. The
transponder header information from "hdrinfo" is first stored in the
data file, then the data is read from the temporary file and stored
in the data file. The key information, which is the aircraft ID,
etc., is stored in the key file from the header information
"hdrinfo."

B-1

APPENDIX B

SEQUENCE FILE EDITOR FUNCTIONS

GENERAL DESCRIPTION

The test sequence file editor program seq.lo is used to generate and
modify test sequence files. The program is a menu driven screen
editor. The heart of the program is comprised of four discrete
display functions that perform the basic capabilities of the editor
which are: file access, file display, the edit screen, and a list of
available tests.

SEQUENCE FILE STRUCTURE.

Test sequence files contain a header record and test number records.
The header record currently contains an integer field which contains
the number of tests in the file. The remaining 254 bytes are for
future expansion if needed. Following the header field is a series of
records, one for each test number stored in the file. The test number
records contain an integer for the test number and a long integer as
a flag field. The flag field is currently not in use. Figure B-1
shows the sequence file format.

HEADER

TEST NUMBER 1

TEST NUMBER 2

TEST NUMBER 3

--

TEST NUMBER N

=

HEADER - struct seqf_head
{

__ int test num;
}
254 bytes free.

 TEST NUMBERS - struct test_type
{
int num;

__ long flg;
}

Test numbers are stored in "num." The
"flg" field is currently not used.
One record is stored for each test
number.

FIGURE B-1. TEST SEQUENCE FILE STRUCTURE

SOURCE FILES.

Include files (.h). The following is a list of the include files
used by the SEQ program and a brief description of their contents:

C-2

displib.h - definitions for WYSE terminal display
attributes and escape sequences.

seqflib.h - relevant definitions used by the SEQ
editor.

Stdlib.h - standard library, provides common definitions such
as TRUE, FALSE, etc.

tstlib.h - common transponder testing library.

Source files (.cc). The seq program may be linked by running the
command file seq.cf. A cross-reference between function names and
file names follows:

chk_name() chkname.cc
chk_tst() chktst.cc
curpos() curpos.cc
dis_matx() dismatx.cc
displ() displ;cc
disp2() disp2.cc
disp3() disp3.cc
disp4() disp4.cc
get_dec() getdec.cc
get_input() getinput.cc
getyorn() getyorn.cc
main() seq.cc
rd_tests() rdtests.cc
read_seqf_file() sfread.cc
toupper() toupper.cc
vfcreat() vfcreat.cc

 vfdes() vfdes.cc
vfopen() vfopen.cc
writ seqf_file() sfwrite.cc

chk_name
NAME

chk name - Check file name. Source file chkname.cc.

FUNCTION CALL
chk_name(filename, count)
char *filename; /* Filename to check */
int count; /* Number of characters */

DESCRIPTION
Tests a character string to see if it is a valid VERSAdos file

name.

DETAILED DESCRIPTION
The purpose of this function is to test for a valid filename

before it is combined with user number and catalog, etc., for file
open. The name is stored in the character string "filename" and the
length of the string is passed in the variable "count." The first
character is tested to be an alphabetic character and the following
characters are tested to be either alphabetic or numeric. If either

B-3

of these conditions are violated, a "1" is returned to indicate
illegal characters. If count is greater than eight, a "2" is returned
to indicate the file name is too long. If the file name is valid, the
function returns a "O."

chk_tst
NAME

chk_tst - Check transponder test number is within range.
Source file - chktst.cc.

FUNCTION CALL
 chk_tst(tst_num)
 int tst_num; /* Test number to check */

DESCRIPTION
This function will check that a test number is greater than "O"

and less than or equal to T_LIMIT. T_LIMIT is defined in tstlib.h.

curpos
NAME

curpos - Cursor position. Source file - curpos.cc.

FUNCTION CALL
 curpos(ro, co)
 int ro; /* Screen row */
 int co: /* Screen column */

DESCRIPTION
This function will position the cursor at the specified row and

column on a wyse 7S compatible terminal.

dis_matx
NAME

dis_matx - Display number in 10 x 10 matrix. Source file-
dismatx.cc.

FUNCTION CALL
 dis_matx(test_array, seq_ans)
 int test_array[]; /* Test # array */
 int seq ans; /* Sequence number */

DESCRIPTION
This function positions and displays the test numbers in the 10 x

10 matrix for the edit function. If there is no test number at the
sequence position, a blank box will be displayed. The numbers will
be displayed right justified. The location in the matrix area is
determined by the sequence number.

displ
NAME

displ - display function #1, file access. Source file-
displ.cc.

C-4

FUNCTION CALL
displ(s_fil_data, test_array, s_file, access, fp)
struct seqf_head *s_fil_data; /* File header */
int test_array; /* Test # array */
char *s_file; /* Sequence file */
int *access; /* Access mode R,W */
char *fp; /* File LUN */

DESCRIPTION
Displ.cc is display function 1, the file access display. This

function provides file access for reading and writing test sequence
files to the disk.

DETAILED DESCRIPTION
The function creates the display screen and then loops to accept

characters from the keyboard. If the default file is accepted
with a carriage return, the loop is ended. If a valid file name is
entered, the loop is ended; otherwise, a message is displayed as to
why the name is invalid. If a space bar is pressed, the file access
mode is toggled between read and write, and is displayed as such on
the screen. If the function key F5 is pressed, the function returns a
"0" as the indication to exit the program.

If the default file name was accepted or a valid file name was
entered, a complete filename is constructed using the volume, user
number, and catalog defined in stdlib.h as well as the extension
defined in seqflib.h.

The file is then opened.
If the access is for read, the file is read with a call to the

function read_seqf_file() which is the source file sfread.cc. If the
read is successful, the file is closed and the function returns a "2"
to indicate that the next display function to call is disp2, the
file display function. If the read is not successful, the
appropriate error messages are displayed.

If the access is for write, the test array must contain at least
one test number before it can be written. If the array is empty an
error message is displayed and the user can either exit by entering
an F5 key or reenter the program with read access by typing any other
key. If the array contains one or more test numbers, the file is
checked to see if it currently exists. If it currently exists, the
user is warned and is prompted as to whether or not to replace it. If
the user wishes to replace the file, the old file is deleted and a
new one of the same name is created. If the file did not exist, it is
created. The file is then written to the disk with a call to the
function writ_seqf_file() which is the source file sfwrite.cc. If
the write is successful, the function switches the file access to
"read" and returns a "1" to cause the program to return to display 1.
If there is an error, it is displayed on the screen.

disp2
NAME:

disp2 - display function #2, file display. Source file-
disp2.cc.

FUNCTION CALL

B-5

disp2(t_tests, num_strs, s_fil_data, test_array, filename) char
t_tests; / Array of test names */

int num_strs; /* Number of test names */
struct seqf_head *s_fil_data; /* File header */
int test_array[]; /* Test # array */ char

filename; / Sequence file */

DESCRIPTION
Disp2.cc is display function 2, the file display screen. This

function will display the contents of a test sequence file on the
terminal screen. It will list the sequence number, test number, and
the name of each test in the file. The user may page through the list
of tests and make a hardcopy of the list on the printer.

DETAILED DESCRIPTION
The function creates the display and then checks if there is a

cross-reference test name list available, (num_strs > 0). The
variable num_strs contains the value of the return from the function
call to rd_tests() in main(). If num_strs is "0" the test list was
empty. If it is "-1" the test list file could not be accessed. In
either case, an error message is displayed and the user may enter F7
to return to display 1, or enter F8 to go to display 4.

If num_strs indicates that there is a test list available, the
first page of the file will be displayed. This display mechanism is
contained in a "while loop" since the display can be paged. First the
screen is cleared in the area where the tests are displayed. Then,
until the screen is full or there are no more tests in the file, the
array of tests are indexed by the test numbers stored in the file and
printed on the screen. If there is no test name available in the
file, only the test number is displayed. The variable "start" is used
to keep track of the current position in the file between "pages."
The terminal is then polled for keyboard input. There are four active
function keys: F5 to page, F6 to print, F7 to exit to display 1, and
F8 to exit to display 4 to edit the file.

disp3
NAME

disp3 - display function #3, test list. Source file-
disp3.cc.

FUNCTION CALL
 disp3(t_tests, num_strs)
 char *t_tests; /* Array of test names */
 int num_strs; /* Number of test names */

DESCRIPTION
Display function 3 is used to produce a list of available

transponder tests on the terminal screen. The user may page through
the list and make a hardcopy of the list on the printer.

DETAILED DESCRIPTION
The function creates the display and then checks if there is a

cross-reference test name list available (num_strs > 0). The variable
num_strs contains the value of the return from the _function call to
rd_tests() in main(). If num_strs is "0" the test list was empty.

C-6

If it is "-1" the test list file could not be accessed. In either
case, an error message is displayed and the user may enter F7 to
return to display 1.

If num_strs indicates that there is a test list available, the
first page of the list will be displayed. This display mechanism is
contained in a "while loop" since the display can be paged. First,
the screen is cleared in the area where the tests are displayed.
Then, the test list file is displayed until the page is full or there
are no more tests in the list. The variable "start" is used to keep
track of the current position in the file between "pages." The
terminal is then polled for keyboard input. There are three active
function keys: F5 to page, F6 to print, and F7 to exit to display 4
to edit the file.

disp4
NAME

disp4 - display function #4, edit screen. Source file-
disp4.cc.
FUNCTION CALL
 disp4(s_fil_data, test_array, access, filename)
 struct seqf_head *s_fil_data; /* File header */
 int test_array[]; /* Test # array */
 int *access; /* Access mode R,W */
 char *filename; /* Sequence file */

DESCRIPTION
Disp4 is display function 4, the file edit screen. This

function allows the user to generate or modify test sequence files .

DETAILED DESCRIPTION
The function creates the display and then displays the test

numbers in the test matrix area. The function dis_matx() is used to
position the tests properly in the matrix. The variable "test_ans"
is used to keep track of the test number at the current test sequence
position. The current test number and sequence number are displayed
at the entry prompts.

The function then waits for keyboard input from the user. If the
first character is an escape key, the rest of the input is stored.
If the F5 key is entered, insert mode is activated and indicated as
such on the display with "INSERT" underlined. If the F6 key is
entered, replace mode is activated and indicated with "REPLACE"
underlined. If the F7 key is pressed, the test number at the current
sequence position is deleted from the array as well as the display
matrix. If SHIFT F7 is entered, all the tests are deleted from the
array and the display matrix. If F8 is entered, the function returns
a "3" to call the test list function. If F9 is entered, the access
mode is switched to "write" and a "1" is returned to call the file
access function. If an arrow key is entered, the function will
position the cursor to the appropriate position, either the "TEST
NUMBER" or "SEQUENCE NUMBER" prompt.

If numeric data is entered, the function get_dec() is called to
store the input. If the cursor is on the test number question, the
function chk_tst() is used to test for a valid test number. If the
test number is invalid, an error message is displayed. If there is no
more room for tests in the matrix, an error message is displayed. If

B-7

everything is valid, the test number is entered into the array and
displayed in the test matrix. The test sequence number is advanced
to the next available position and displayed.

If a sequence number is entered, it is tested to see if is within
range. If it is, the sequence number is advanced to that position and
the new value is displayed. If the sequence number entered is out of
range, an error message is displayed.

C-8

get_dec
NAME

get_dec() - Get decimal numbers as input. Source ile-
getdec.cc.

FUNCTION CALL
get_dec(p_data, row, col, max_in)
char *p_data; /* Pointer to input data */
int row, /* Current row position */
int col; /* Current column position */
int max_in; /* Max digits allowed */

DESCRIPTION
Accepts only numeric characters as input from keyboard.

DETAILED DESCRIPTION
This function is intended to be called only after the first

numeric character has been read in. Its purpose is to accept only
numeric characters (0 - 9) until a carriage return is entered or the
buffer is full. If any other characters are entered they will be
ignored except for the backspace and delete keys, which are
recognized and will erase characters that were entered. The input
characters are stored in the array p_data up to the maximum input
length indicated in max_in. Row and Col are used to position the
echoed characters on the screen.

get_input
NAME get input() - Get keyboard input. Source file - getinput.cc

FUNCTION CALL
get_input(p_data, count, row, col, mx_in)
char *p_data; /* Pointer to input data */
int *count; /* # characters read in */
int row; /* Current row position */
int col; /* Current column position */
int mx in; /* Max character input allowed */

DESCRIPTION
This is a general purpose function that filters only printable

characters from keyboard input and echoes them on screen and stores
them in a fixed length buffer.

DETAILED DESCRIPTION
This function is intended to be called only after the first

character has been read in. Its purpose is to test this character and
test and accept any following characters until the buffer is full or
a carriage return is entered. If any invalid characters are entered
(not between ASCII 0x20 and 0x7f) the function returns a "1" as an
error condition. If all characters are valid and a carriage return is
entered, the function will return a "0" as a success condition. The
backspace and delete keys are recognized and will erase characters
that were entered. The input characters are stored in the array
p_data up to the maximum input length indicated in mx_in. Row and Col
are used to position the echoed characters on the screen. Count will
contain the number of characters read in.

B-9

getyorn
NAME

getyorn - get "y" or "n" from the keyboard. Source file-
getyorn.cc.

FUNCTION CALL
getyorn();

DESCRIPTION
Waits indefinitely for a "y" or "n" from the keyboard. Lower case

and upper case are allowed. Returns a "1" if a "y" is entered,
returns a "0" if "n" is entered.

main
NAME

main() - Test sequence file editor main routine. Source file -
seq.cc.

FUNCTION CALL
 main()

DESCRIPTION
The main function of the test sequence file editor program

controls the calls to the various functions of the program.

DETAILED DESCRIPTION
The main function initializes the appropriate variables to start

with display function #1. It then calls the function rd_tests()
which stores a list of available transponder tests in the string
array "t_tests." The function then enters a "while loop" in which it
will remain until the program exits. The "while loop" consists of a
screen clear and a switch statement where the program will switch to
the appropriate display functions. Each of the display functions
returns the value of the next function to ca11. If the value "0" is
returned, the program exits.

rd_tests
NAME

rd_tests - Read list of transponder tests. Source file-
rdtests.cc.

FUNCTION CALL
 rd_tests(t_tests)
 char t_tests[][SCREEN_WDTH]; /* Array of test names */

DESCRIPTION
Reads and stores a list of transponder tests into the array

"t_tests." The list is stored in the file with the name defined by
"LISTFILE" which is defined in seqflib.h. Returns the number of
strings read.

read_seqf_file
NAME

read_seqf_file - read test sequence file. Source file-

C-10

sfread cc.

FUNCTION CALL
read_seqf_file(s_fil_data, test_array, fp)
struct seqf_head *s_fil_data; /* File header */
int test_array[]; /* Test # array */
char *fp, /* File LUN */

DESCRIPTION
Reads a test sequence file from disk given the logical unit

number of the file. The header information and the array of tests are
returned.

DETAILED DESCRIPTION
The file is first rewound. If an error occurs, the program will

exit with an error message. An lread() is used for all file reads.
First, the header is read into a temporary buffer. If an error
occurs, the error code is returned in negative logic. The data are
then transferred from the temporary buffer into the header struct
"s_fil_data." The test numbers are read in until the end of file.
The test numbers are stored in the format "struct test_type" which is
defined in this function. The test number field from this struct is
stored into the test array (test_array[]). The flag field "flg" in
the test struct is currently not used.

toupper
NAME

toupper - convert alphabet characters to upper case. Source
file - toupper.cc.

FUNCTION CALL
 toupper(sptr)
 char *sptr; /* Character string pointer */

DESCRIPTION
Converts all alphabetic characters in the string "sptr" to upper

case. Terminates when a null character is reached.

vfcreat
NAME

vfcreat - VERSAdos file create. Source file - vfcreat.cc.

FUNCTION CALL
vfcreat(vfname) char *vfname; /* File name */

DESCRIPTION
Creates a VERSAdos file and returns a logical unit number(char).

If there is an error, returns the VERSAdos error code in negative
logic. Uses lalloc().

vfdes
NAME

vfdes - VERSAdos file name/file descriptor conversion.
Source file - vfdes.cc.

B-11

FUNCTION CALL

vfdes(filenl, fdesp)
char *filenl; /* File name */
struct fdes *fdesp; /* File descriptor */

DESCRIPTION
Given a complete filename (includes volume, user ID, etc.), will

convert to file descriptor. For use where file access requires a
file descriptor.

vfopen
NAME

vfopen - VERSAdos file open. Source file - vfopen.cc.

FUNCTION CALL
vfopen(vfname)
char *vfname; /* File name */

DESCRIPTION
Opens a VERSAdos file and returns a logical number(char). If

there is an error, returns the VERSAdos code in negative logic. Uses
lassign().

writ_seqf_file
NAME

writ_seqf_file - write test sequence file. Source file
sfwrite.cc.

FUNCTION CALL
 writ_seqf_filets_fil_data, test_array, fp)

struct seqf_head *s_fil_data; /* File header */
int test_array[]; /* Test # array */
char *fp; /* File LUN */

DESCRIPTION
Writes a test sequence file to the disk given the logical unit

number of the file. The header information and the array of tests are
written.

DETAILED DESCRIPTION
The header information is first stored in a buffer named "a_buf."

It is then written to file using the lwrite function. The function
loops for the number of tests indicated in the header and stores the
numbers in the test_type format in the file. The file is then closed
and the Logical unit is freed.

C-1

APPENDIX C

ATCRBS FIELD TESTS

INTRODUCTION

This section provides a detailed description of the DATAS ATCRBS
field tests. For each test there is a description section which
defines the purpose of the test, a procedure section that briefly
describes the more important elements of the test procedure, lists of
the interrogation and test parameters, the test data structure
definition, and following each test is a sample plot of the test
results. Preceding the test by test descriptions is an overview
which tells about fundamental items that are common to all tests.

The overview and parts of the individual test descriptions contain
information that is primarily important only for software maintenance
or development support.

OVERVIEW.

The Air Traffic Control Radar Beacon System (ATCRBS) field test
procedures were designed to follow the procedures defined in the
Minimum Operational Performance Standards (MOPS) for Air Traffic
Control Radar Beacon System/Mode Select (ATCRBS/Mode S) Airborne
Equipment (Document No. RTCA/DO-181). Each ATCRBS test is numbered.
The test numbers loosely follow the sequential order in which they
appear in the MOPS. This is not a strict requirement of the test
program design. The reason that the test numbers are not consecutive
is that some of the MOPS test procedures are not applicable to a
field testing situation, or, they are Mode S transponder test
procedures. The tests are referenced by number so that they can be
called using an index (test number). They are stored as an array of
functions. This function array is defined in the include file
"testdef.h."

Each test has a source file named "aftst(X).cc" ((X) is the test
number) and an "include file" "tst(X).h." The "include file"
primarily contains the structure definition for the test data.

GLOBAL VARIABLES. The calibration tables are used by virtually all
of the tests. The calibration tables are stored in the global
structure "struct CAL_TYPE calib." The calibration structure types
are defined in "calib.h." "tstlib.h" is included since it provides
the structure definitions for the interrogation and test parameters
as well as some other common definitions. The interrogation
parameters are stored in the global structure array "struct INT_TYPE
int_cur[]" and the test parameters are stored in the qlobal structure
"struct TST_TYPE tst_cur."

Another global variable used by the tests is "int i_afloss" which is
the airframe loss. This variable is used to adjust the interrogation
power and reply power measured. The airframe loss value originates
from the calibration tables and is a function of airframe height.

C-2

The global variable "i_power" is the system interrogation power. This
is the interrogation level set by either the user or the system,
depending on what power mode was selected. This value is used by
those tests where interrogation power is not controlled as a function
of the test or where a certain interrogation level is not defined by
the test.

The global variable "tx_port" defines which transmitter port is
currently in use. The value of this variable is stored in the main
function (source file afexec.cc). The #defines used to determine the
value come from "calib.h."

INTERROGATION WAVEFORMS. The interrogation waveforms are defined
within each test function. The process that determines the resulting
waveform is quite elaborate because the system was designed to be as
flexible as possible.

A default waveform is provided in each test. The waveform is stored
in a structure array (struct wave_parm) which was designed to be
easily readable to the test programmer. The following is an example
section from such a struct:

 PULSE TIME ATTEN. CHAN. ACTION

{ DELAY, 100L, 1, 1, DELAY, },
{ LE, 10000L, 0, 1, PAM,},
{ TE, 800L, 0, 1, PAM,},

There are five variables within each struct (five columns). The pulse
field defines the event, i.e. lead edge, trail edge, delay, etc.. The
time field stores the time to wait before performing the event. The
attenuator field determines which attenuator to select for the event.
In order for the attenuators to switch properly in hardware, there
must be a transition from one attenuator to another; hence, each test
begins with an attenuator switch from 1 to 0. The channel field
determines which of the three channels to use. The action field
controls what kind of event to perform PAM, DELAY, REPLY (reply
window), etc.. These waveforms are defined as static and are
initialized when the program is first started. Any modifications to
what is stored in these structures will affect the subsequent calls
to these tests. The programmer should be careful.

The interrogation waveforms are user modifiable. The interrogation
parameters determine certain characteristics about the waveforms (P1
width, P1-P2 spacing etc.). The function "wfmod()" is called for
each pulse in the waveform. This function will adjust the values in
the struct to set the pulse width and spacing according to what is
stored in the interrogation parameters for the test.

As mentioned earlier, the waveform structure is only used to
provide a readable way for the programmer to set waveform
definitions. The interrogation waveforms must actually be stored in
the DATAS transmitter memory locations in the compact binary format

C-3

used by the hardware. The function "gen_pattern()" is called to
translate from the structure format to the hardware format.

TRANSMITTER FREOUENCY. The transmitter frequency should be set by
each test, since the frequency set by the previous test may have been
some value other than what is required by the current test. The
transmitter frequency for most tests (other than those that vary the
frequency) is determined by the interrogation parameters. The
frequency is set with a call to the function "setfreq()." The
frequency should be set for each channel used by the test.

TRANSMITTER POWER. There are several functions that are used to help
set the attenuator levels to control the transmitter power. The
function "chk_level()" can be used to test if a desired power level
is within range of the attenuator. The function "setlev()" will do
even more. It will see if the desired level is within range. If it
is, it will set it; if it is not, it will set it to the maximum if it
is too high, or set it to the minimum if it is too low. The power
level is variable by 1/10 dB steps.

C-4

TEST NUMBER: 2

FILE: aftst2.cc - ATCRBS field test #2.

TEST: Sensitivity.

DESCRIPTION: Sensitivity refers to how well the transponder is able
to receive transmissions. A high sensitivity would mean that a very
weak signal could be accepted and processed. A low sensitivity would
mean that a very strong signal is required at the receiver before the
transponder will respond. Either extreme in the air traffic
environment is undesirable since a sensitivity that is too low could
cause missed transmissions or too low of an operating range and too
high of a sensitivity level could make the transponder too
susceptible to fruit. The national standard has determined that the
sensitivity must be -73 dBm +/- 4 dBm. This test will determine the
minimum RF signal level required to produce a 90 percent reply
efficiency for both Modes A and C. This measurement is achieved
with the use of a successive approximation algorithm
(suc_apprx()). Reply power and delay are measured separately at the
end of the test with a short series of ATCRBS interrogations.

A sensitivity measurement relies on having a calibrated
transmitter power level at the antenna of the transponder from the
DATAS test system. Therefore, a true sensitivity measurement can only
be made when the transponder under test's antenna is directly in the
nose of the main beam. This test should only be run in the field
testing environment when it is assured that the required test
conditions are met, otherwise the sensitivity will merely be relative
to the quality of transmission coupling. Sensitivity is also measured
by the function "spandd()" (Sensitivity, Power, and Delay test) which
is run at the end of the series of tests so that the aircraft can be
made to roll through the calibrated center beam during these critical
measurements. This is the procedure that should be used when the
system operators have little or no control over the test environment.

TEST PROCEDURE: The procedure is the same for both Modes A and C. The
interrogation power is initially set to -88 dBm and the power
variation (the amount the power is changed by) is set to 8 dB. The
transponder is interrogated a number of times (initially 20) which
will increase as the test progresses. If the transponder replies
greater than 90 percent the interrogation power is decreased by the
"power variation" amount. If the transponder replies less than 90
percent the interrogation power is increased by the "power variation"
amount. Once the transponder has replied 90 percent the variation is
divided in half with each iteration. This procedure will continue
until the variation has reached minimum. The sensitivity is the
transmit power at the end that achieved a 90 percent reply
percentage.

 For each interrogation mode, the function interrogates to
measure reply power and delay.

INTERROGATION PARAMETERS:
Mode A:
P1 width - int cur[2].parm[A_Pl_WDTH] determines P1 width.

C-5

P2 width - int cur[2].parm[A_P2_WDTH] determines P2 width.
P3 width - int cur[2].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing -int cur[2].parm[A_Pl_P2_SP] determines Pl-
P2 spacing.
P1-P3 spacing int_cur[2].parm[A_Pl_P3_SP] determines P1-
P3 spacing.
Pl P3 power - Determined by test.
P2 power - int_cur[2].parm[A_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[2].parm[A_PRF] determines PRF.
Frequency - int_cur[2].parm[A_FREQ] determines frequency.

Mode C:
P1 width - int_cur[2].parm[C_Pl_WDTH] determines P1 width.
P2 width - int_cur[2].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[2].parm[C_P3_WDTH] determines P3 width. P1-P2

spacing - int_cur[2].parm[C_Pl_P2_SP] determines P1-P2 spacing.
P1-P3 spacing - int_cur[2].parm[C_Pl_P3_SP] determines P1-P3
spacing.
Pl,P3 Power - Determined by test.
P2 power - int_cur[2].parm[C_P2_PO] determines P2 power
offset from Pl,P3 power.

 PRF - int_cur[2].parm[C_PRF] determines PRF.
Frequency - int_cur[2].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst2.del_ints - determines the number of
interrogations to use in the delay and power measurement part
of the test.
tst_cur.tst2.meas_acc - determines the measurement accuracy
of the sensitivity test, either to 1 dB or 1/10 of a dB.

TEST DATA:
int meas_acc; /* Measurement accuracy */
int a_sens; /* Mode A sensitivity */
int c_sens; /* Mode C sensitivity */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e code; /* Test error codes */

Data size = 12 bytes.

C-6

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A

Comment: PILOT REPORTED TRANSPONDER TROUBLE

DATAS TEST #2 ATCRBS SENSITIVITY

SENSITIVITY/VARIATION FAILURE

MODE A SENSITIVITY - 74.0 dbm

MODE C SENSITIVITY - 74.0 dbm

SENSITIVITY VARIATION - 0.0 dbm

NO

NO

NO

C-7

TEST NUMBER: 3

FILE: aftst3.cc - ATCRBS field test #3.

TEST: ATCRBS Dynamic Range.

DESCRIPTION: Dynamic range is how the transponder reacts to
interrogations received at various power levels. The transponder
should reply greater than 90 percent to Mode A and Mode C
interrogations at all power levels between Minimum Transmit Level
(MTL) and -21 dBm. MTL refers to the lowest power level that the
transponder will reply greater than 90 percent.

The dynamic range test requires a calibrated transmitter power
level at the antenna of the transponder from the DATAS test system.
Therefore, the dynamic range test should only be run when the
transponder under test's antenna is directly in the nose of the main
beam. This test should only be run in the field testing environment
when it is assured that the required test conditions are met,
otherwise, the dynamic range will merely be relative to the quality
of transmission coupling.

TEST PROCEDURE: The procedure is the same for both Modes A and C. The
DATAS power level is varied from the value stored in the parameter
variable "tst_cur.tst3.strt_pow" to the value stored in
"tst_cur.tst3.end_pow" in increments of "tst_cur.tst3.pow_inc." The
number of replies for each level is stored.

INTERROGATION PARAMETERS:
Mode A:
Pl width - int_cur[3].parm[A_Pl_WDTH] determines P1 width.
P2 width - int_cur[3].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[3].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[3].parm[A_Pl_P2_SP] determines P1-P2
spacing.
P1-P3 spacing - int_cur[3].parm[A_Pl_P3_SP] determines Pl-P3 spacing.
Pl,P3 power - Determined by test.
P2 power - int_cur[3].parm[A_P2_PO] determines P2 power offset
from Pl,P3 power.
PRF - int_cur[3].parm[A_PRF] determines PRF.
Frequency - int_cur[3].parm[A_FREQ] determines frequency.

Mode C:
P1 width - int cur[3].parm[C_P1_WDTH] determines P1 width.
P2 width - int cur[3].parm[C_P2_WDTH] determines P2 width.
P3 width - int cur[3].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing int cur[3].parm[C_Pl_P3_SP] determines P1-
P2 spacing.
P1-P3 spacing - int_cur[3].parm[C_P1_P3_SP] determines P1-
P3 spacing.
Pl.P3 power - Determined by test.
P2 power - int_cur[3].parm[C_P2_PO] determines P2 power offset
from Pl,P3 power.
PRF - int_cur[3].parm[C_PRF] determines PRF.
Frequency - int_cur[3].parm[C_FREQ] determines frequency.

C-8

TEST PARAMETERS:
tst_cur.tst3.num_ints - determines the number of
interrogations to send at each power level.
tst_cur.tst3.strt_pow - Test starting power level.
tst_cur.tst3.end_pow - Test ending power level.
tst cur.tst3.pow_inc - Power level increment.

TEST DATA:
 int num_ints; /* Number of interrogations */
 int strt_pow; /* Start power */
 int end_pow;/* End power */
 int pow_inc;/* Power increment */
 int rep_cnt[2][801];/* Reply count - [0][n] Mode A

 [l][n] Mode C */
 int power; /* Highest reply power measured */
 int delay; /* Lowest reply delay measured */
 int e_code; /* Test error codes */

Data size = 3218 bytes.

C-9

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORTED TRANSPONDER TROUBLE

DATAS TEST #3 DYNAMIC RANGE

100 Interrogations Per Point

C-10

TEST NUMBER: 9

FILE: aftst9.cc - ATCRBS field test #9.

TEST: Reply Transmission Frequency.

DESCRIPTION: This test measures the transmitter radio frequency of
the transponder under test. The national standard requires that the
frequency is 1090 mHz +/- 3 mHz for operation in aircraft not
exceeding altitudes of 15,000 feet. Aircraft operating above 15,000
feet must have a carrier frequency of 1090 mHz +/- 1 mHz.

The reply frequency test only requires that the transponder
responds to the interrogations from the DATAS system. It is not
required that the antenna of the transponder be directly in the main
beam.

TEST PROCEDURE: This test will measure the minimum, mean, and
maximum reply frequency from each reply pulse from the specified
number of replies examined. It will also store the number of
occurrences of reply frequency through a specified range from all
reply pulses. This will enable a bell curve plot of transmitter
frequency vs. percent occurrence.

INTERROGATION PARAMETERS:
Mode A:
Pl width - int_cur[9].parm[A_Pl_WDTH] determines Pl width.
P2 width - int_cur[9].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[9].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[9].parm[A_Pl_P2_SP] determines P1-
P2 spacing.
P1-P3 spacing - int_cur[9].parm[A_Pl_P3_SP] determines P1-
P3 spacing.
Pl,P3 power - System interrogation power "i_power" offset by
int_cur[9].parm[INT_PO].
P2 power - int_cur[9].parm[A_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[9].parm[A_PRF] determines PRF.
Frequency - int_cur[9].parm[A_FREQ] determines frequency.

Mode C:
Pl width - int_cur[9].parm[C_P1_WDTH] determines Pl width. P2

width - int_cur[9].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[9].parm[C_P3_WDTH] determines P3 width. P1-P2

spacing - int_cur[9].parm[C_Pl_P2_SP] determines P1-P2 spacing.
P1-P3 spacing - int_cur[9].parm[C_Pl_P3_SP] determines Pl-P3
spacing.
Pl,P3 power - System interrogation power "i_power" offset by
int_cur[9].parm[INT_PO].
P2 power - int_cur[9].parm[C_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[9].parm[C_PRF] determines PRF.
Frequency - int_cur[9].parm[C_FREQ] determines frequency.

TEST PARAMETERS:

C-11

tst_cur.tst9.num_ints determines the number of interrogations
to send.
tst_cur.tst9.mode - determines interrogation mode. 0=Mode A.

1=Mode C.

TEST DATA:
struct T9_P_TYPE
{
 unsigned long min; /* Min frequency */
 unsigned long mean; /* Mean frequency */
 unsigned long max; /* Maximum frequency */
};
int num_replies; /* Number of replies examined */
int mode; /* Interrogation mode 0=A l=C */
struct T9_P_TYPE freq[l6]; /* Freq. array */
long frq_arr[l01]; /* Freq. array all pulses */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 606 bytes.

C-12

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #9 REPLY TRANSMISSION FREQUENCY

Test Data Based on 100 Replies

Interrogation Mode A

C-13

TEST NUMBER: 10

FILE: aftstlO.cc - ATCRBS field test #l0.

TEST: ATCRBS Power Output.

DESCRIPTION: This test measures the transmitter power of the
transponder under test by measuring the amplitude of the reply
pulses.

A power measurement relies on having a calibrated coupling path
between the DATAS system and the aircraft's transponder. Therefore, a
true power measurement can only be made when the transponder under
test's antenna is directly in the nose of the main beam. This test
should only be run in the field testing environment when it is
assured that the required test conditions are met, otherwise, the
power measured will merely be relative to the quality of transmission
coupling. Reply power is also measured by the function "spandd()"
(Sensitivity, Power and Delay test) which is run at the end of the
series of tests so that the aircraft can be made to roll through the
calibrated center beam during these critical measurements. This is
the procedure that should be used when the system operators have
little or no control over the test environment.

However, this test does contribute some valuable information even
if it is run outside of the center beam. Since it stores the reply
power of each individual pulse, the relative reply power of each
pulse can be compared to the others. It can also be made to run at
different Pulse Repetition Frequencies (PRF's) and therefore, provide
information relating reply power to transmitter duty cycle.

TEST PROCEDURE: This test has two operating modes: single PRF and
multiple PRF modes. The operating mode is determined by the test
parameter variable "tst_cur.tstlO.t_mode" (0=single 1=multiple). In
"single PRF mode" the test will measure the reply power from a series
of interrogations at a single PRF which is determined by the test
parameter "tst_cur.tstl0.s_prf." This mode should be selected when a
shorter test time is required; reply power vs. PRF information is not
desired, or if the test is being conducted in a field environment
where a high PRF could interfere with the air traffic control
systems. Multiple PRF mode will conduct the same test repeated for
10 different PRF's. The PRF's are determined by the test parameters
"tst_cur.tstlO.m_prf_l0" and "tst_cur.tstl0.m_prf_hi." The 10 PRF's
are evenly divided between the low and high PRF.

This test will measure the minimum, mean, and maximum reply power
of each reply pulse from the specified number of replies examined. It
will also store the number of occurrences of reply power through a
specified range from all reply pulses. This will enable a bell curve
plot of reply power vs. percent occurrence.
INTERROGATION PARAMETERS:

Mode A:
P1 width - int_cur[10].parm[A_P1_WDTH] determines P1 width.
P2 width - int_cur[10].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[10].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[10].parm[A_Pl_P2_SP] determines Pl-
P2 spacing.
P1-P3 sPacinq - int_cur[10].parm[A_Pl_P3_SP] determines P1-

C-14

P3 spacing.
Pl.P3 Power - System interrogation power "i_power" offset by
int_cur[10].parm[INT_PO].
P2 Power - int_cur[10].parm[A_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[10].parm[A_ PRF] determines PRF.
Frequency - int_cur[10].parm[A_ FREQ] determines frequency.

Mode C:
P1 width - int_cur[10].parm[C_Pl_WDTH] determines P1 width.
P2 width - int_cur[10].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[10].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[10].parm[C_Pl_P2_SP] determines P1- P2
spacing.
P1-P3 spacing - int_cur[10].parm[C_Pl_P3_SP] determines P1- P3

spacing.
Pl.P3 power - System interrogation power "i_power" offset by
int_cur[10].parm[INT_PO].
P2 power - int cur[10].parm[C_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[10].parm[C_ PRF] determines PRF .
Frequency - int_cur[10].parm[C_ FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tstlO.num_ints - determines the number of interrogations

to send.
tst_cur.tstl0.i_mode - determines interrogation mode. 0=Mode A.

1=Mode C.
tst_cur.tstlO.t_mode - determines test mode. 0=single PRF mode,

1=Multiple PRF mode.
tst_cur.tstl0.s_prf - PRF for single PRF mode.
tst_cur.tstlO.m_prf_l0 - Starting PRF for multiple PRF mode.
tst cur.tstlO.m_Prf_hi - Ending PRF for multiple PRF mode.

C-15

TEST DATA:
struct Tl0_P_TYPE
{
int min; /* Min power */
int mean; /* Mean power */
int max; /* Maximum power */

};
int num_replies[10];/* Number of replies examined each PRF */
int i_mode; /* Interrogation mode 0=A 1=C */
int t_mode; /* Test mode 0=single 1=multiple PRF */
int num_prfs; /* # PRF's run if multiple */
int s_prf; /* Single PRF */
int m_prf_lo; /* Multiple PRF low */
int m_prf_hi; /* Multiple PRF high */
struct T10_P_TYPE pow.[16][10];/* power array for 16 pulses
 and 10 PRF's */
int pow_arr[80][10];/* Power array all pulses */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 2618 bytes.

C-16

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORTED TRANSPONDER TROUBLE

DATAS TEST #10 ATCRBS REPLY POWER

Test Data Based on 100 Replies

Interrogation Mode A

PRF - 235

Pilot Plot of Each Reply Pulse Power Plot of All Reply Pulses

C-17

TEST NUMBER: 17

FILE: aftstl7 . cc - ATCRBS f ield test # 17 .

TEST: ATCRBS Reply Rate Limit and Sensitivity Reduction.

DESCRIPTION: This test determines the reply rate limit and tests the
sensitivity reduction function of the transponder. Reply rate limit
is the maximum number of ATCRBS replies the transponder can send in a
1-second interval. The National Standard requires that the limit can
be adjusted between 500 continuous replies per second up to the
maximum number of which the transponder is capable, or 2000 replies
per second, whichever is lesser. Reply rate limit is a function that
protects the transponder from over interrogation .

A sensitivity reduction is when the transponder responds to only
the stronger interrogation signals when it is being over interrogated
.

This test does not require that the transponder be at the center
of the main beam; however, for best results the aircraft should at or
near a stationary position for the duration of the test. This test
attempts to set the interrogation power levels according to the MOPS
definitions which are all relative to MTL. This test measures MTL and
sets the interrogation power relative to it.

TEST PROCEDURE: This test first performs the reply rate limit test.
The interrogation mode used for this test is determined by the test
parameter "tst_cur.tstl7.i_mode" (0=Mode A, l=Mode C). The
transponder is interrogated for 1-second intervals starting at the
PRF determined by the test parameter "tst_cur.tstl7 .prf_l0" and
ending at "tst_cur.tstl7 .prf_hi. "There are 16 PRF's measured which
are evenly divided within this range. MTL is measured prior to this
test and the power is set to 20 dB above MTL. If MTL is not measured
successfully or the power can not be achieved, the power is set to
the system interrogation power. The number of replies for each PRF is
recorded.

The sensitivity test will interrogate for 1 second with a Mode C
interrogation, at the reply rate limit determined earlier with the
power level at MTL +2 0 dB, along with an asynchronous Mode A
interrogation at half the reply rate limit with a power level at MTL
+3 dB. The number of replies for each mode is recorded .

C-18

INTERROGATION PARAMETERS:
Mode A:
Pl width - int_cur[l7].parm[A_Pl_WDTH] determines Pl width. P2
width - int_cur[l7].parm[A_P2_WDTH] determines P2 width. P3 width
- int_cur[l7].parm[A_P3_WDTH] determines P3 width. Pl-P2 spacinq
- int_cur[l7].parm[A_Pl_P2_SP] determines Pl-P2 spacing.
Pl-P3 spacinq - int cur[17].parm[A_Pl_P3_SP] determines Pl-
P3 spacing.
Pl.P3 power - Determined by the test.
P2 Power - int_cur[l7].parm[A_P2_PO] determines P2 power offset
from Pl,P3 power.
PRF - Determined by the test.
Frequency - int_cur[17].parm[A_FREQ] determines frequency.

Mode C:
Pl width - int cur[17].parm[C_Pl_WDTH] determines Pl width.
P2 width - int cur[17].parm[C_P2_WDTH] determines P2 width.
P3 width - int cur[17].parm[C_P3_WDTH] determines P3 width.
Pl-P2 spacing - int_cur[17].parm[C_Pl_P2_SP] determines Pl-
P2 spacing.
Pl-P3 spacing - int_cur[17].parm[C_Pl_P3_SP] determines Pl-
P3 spacing.
Pl,P3 Power - Determined by the test.
P2 Power - int_cur[17].parm[C_P2_PO] determines P2 ower
offset from Pl,P3 power.
PRF - Determined by the test.
Frequency - int_cur[l0].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tstl7.num_ints - determines the number of interrogations
to send in the sensitivity reduction test. tst_cur.tstl7.i_mode -
determines interrogation mode. 0=Mode A. l=Mode C for the reply
rate limit test. tst_cur.tstl7.Prf_lo - Determines starting PRF.
tst cur.tstl7.Prf hi - Determines ending PRF.

C-19

TEST DATA:
struct SAMPLE_TYPE /* One for each PRF, RR limit */
{
 int code; /* Mode A or C code */
 int prf; /* Pulse repetition frequency */
 int reply_count; /* Number of replies */
};
struct RATE_TYPE /* Reply rate limit info */
{
 int i_mode; /* Interrogation mode 0=A 1=C */
 int prf_lo; /* Start PRF */
 int prf_hi; /* End PRF */
 int num_prfs; /* Number PRF's run */
 struct SAMPLE_TYPE sample[l6]; /* Reply info */
 int r_r_limit, /* Reply rate limit */
 int mtl, /* MTL measured */
 int int_power; /* Interrogation power */
};

 struct MODE_TYPE /* Each mode sens. reduc.
}

int code; /* Reply code */
int int_power; /* Interrogation power */
int prf; /* Pulse Repetition Frequency */
int num_ints; /* Number of interrogations */
int numreps; /* Number of replies */

};
stuct SENS_TYPE /* Sens. reduc. info
}

struct MODE_TYPE mode_a; /* Mode A info */
struct MODE_TYPE mode_c; /* Mode C info */

};
struct RATE_TYPE rate; /* Reply rate info */
struct SENS_TYPE sens; /* Sens reduc info */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 136 bytes.

C-20

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: King KT76A

Comment: PILOT REPORTED TRANSPONDER TROUBLE

DATAS TEST #17 REPLY RATE LIMIT AND SENSITIVITY REDUCTION

CODE CHANGED DURING TEST

SENSITIVITY REDUCTION
MODE MODE A MODE C
CODE 7777 0
POWER -71 -54
PRF 493 986

% REPLY 86 100
FAILURE YES NO

Reply Rate Limit
Interrogation Mode A Code - 7677

 REPLY RATE LIMIT - 986

C-21

TEST NUMBER: 19

FILE: aftstl9.cc - ATCRBS field test #19.

TEST: ATCRBS Reply Pulse Spacing.

DESCRIPTION: This test measures the reply pulse spacing of each reply
pulse with respect to the first reply pulse (F1) and with respect to
each previous pulse. Each reply pulse shall be spaced 1.45
microseconds from the previous pulse. The national standard requires
that the pulse spacing tolerances for each reply pulse with respect
to the first framing pulse shall be +/- 0.10 microsecond. The pulse
spacing tolerance of any pulse in the reply group with respect to any
other pulse in the reply group except the first framing pulse shall
be no more than +/- 0.15 microsecond.

This test does not require that the transponder is at the center
of the main beam. However, if the test situation allows control of
the aircraft, it would be beneficial if the ATCRBS reply code be set
to 7777 or some other code that will produce the maximum number of
reply pulses.

TEST PROCEDURE: This test first sets the pulse width threshold with a
call to the function "pw_thresh()." This is required so that the
pulse spacing measurements are made at the proper level with respect
to the rise time of the reply pulses which is affected by the reply
power from the transponder being tested.

The test will interrogate the transponder enough times to produce
the number of replies determined by the test parameter
"tst_cur.tstl9.num_ints." All reply pulses are examined with each
reply. The minimum, mean, and maximum position error with respect to
F1 and with the previous pulse are recorded.

INTERROGATION PARAMETERS:
Mode A:
P1 width - int_cur[l9].parm[A_Pl_WDTH] determines P1 width.
P2 width - int_cur[l9].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[l9].parm[A_P3_WDTH] determines P3 width.
P1-P2 sPacinq - int_cur[l9].parm[A_Pl_P2_SP] determines P1- P2
spacing.
P1-P3 spacinq - int_cur[l9].parm[A_Pl_P3_SP] determines P1- P3
spacing.
Pl.P3 Power - System interrogation power "i_power" offset by
int_cur[l9].parm[INT_PO].
P2 power - int_cur[l9].parm[A_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[l9].parm[A_PRF] determines PRF.
Frequency - int_cur[l9].parm[A_FREQ] determines frequency.

Mode C:
Pl width - int_cur[l9].parm[C_Pl_WDTH] determines Pl width.
P2 width - int_cur[19].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[l9].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[l9].parm[C_Pl_P2_SP] determines P1- P2
spacing.

C-22

P1-P3 spacinq - int_cur[l9].parm[C_Pl_P3_SP] determines P1- P3
spacing.
Pl.P3 power - System interrogation power "i_power" offset by
int_cur[l9].parm[INT_PO].
P2 power - int_cur[l9].parm[C_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[l9].parm[C_PRF] determines PRF.
Frequency - int_cur[l9].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tstl9.num_ints - determines the number of
interrogations to send.
tst_cur.tstl9.i_mode - determines interrogation mode. 0=Mode
A. 1=Mode C.
tst_cur.tstl9.prf_lo - Determines starting PRF.
tst cur.tstl9.prf_hi - Determines ending PRF.

TEST DATA:
struct Tl9_P_TYPE
{

int min; /* Minimum pulse error */
int mean; /* Mean pulse error */
int max; /* Maximum pulse error */

};
int i_mode; /* Interrogation mode 0=A 1=C */
int num_replies; /* Number of replies */
int pulse_flg[16]; /* Pulse flags 0=none 1=pulse */
struct Tl9_P_TYPE perr_fl[16]; /* Position errors F1 ref.*/
struct T19_P_TYPE perr_pp[16]; /* Position errors pls ref */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code: /* Test error codes */

Data size = 234 bytes.

C-23

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A

Comment: PILOT REPORTED TRANSPONDER TROUBLE

DATAS TEST #19 ATCRBS REPLY PULSE SPACING

Test Data Based on 100 Replies

Interrogation Mode A

Position Error Referenced From F1 and Previous Pulse

C-24

TEST NUMBER: 20

FILE: aftst20.cc - ATCRBS field test #20.

TEST: ATCRBS Reply Pulse Shape.

DESCRIPTION: This test measures the reply pulse width of each reply
pulse and the pulse amplitude variation. The national standard
requires that the pulse width for all reply pulses shall be 0.45 +/-
0.10 microsecond. The pulse amplitude variation of one pulse with
respect to any other pulse shall not exceed 1 dB. This test does not
require that the transponder is at the center of the main beam.
However, if the test situation allows control of the aircraft, it
would be beneficial if the ATCRBS reply code be set to 7777 or some
other code that will produce the maximum number of reply pulses.

TEST PROCEDURE: This test first sets the pulse width threshold with a
call to the function "pw_thresh()." This is required so that the
pulse width measurements are made at the proper level with respect to
the rise time of the reply pulses, which is affected by the reply
power from the transponder being tested.

The test will interrogate the transponder enough times to produce
the number of replies determined by the test parameter
"tst_cur.tst20.num_ints." All reply pulses are examined with each
reply. The minimum, mean, and maximum pulse widths are measured.

INTERROGATION PARAMETERS:
Mode A:
P1 width - int_cur[20].parm[A_Pl_WDTH] determines P1 width.
P2 width - int_cur[20].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[20].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[20].parm[A_Pl_P2_SP] determines P1-P2
spacing.
P1-P3 sPacina - int_cur[20].parm[A_Pl_P3_SP] determines P1-P3
spacing.
Pl.P3 power - System interrogation power "i_power" offset by
int_cur[20].parm[INT_PO].
P2 power - int_cur[20].parm[A_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur~20].parm[A_PRF] determines PRF.
Frequency - int_cur[20].parm[A_FREQ] determines frequency.

C-25

Mode C:
P1 width - int_cur[20].parm[C_Pl_WDTH] determines Pl width.
P2 width - int_cur[20].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[20].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacinq - int_cur[20].parm[C_Pl_P2_SP] determines P1- P2
spacing.
P1-P3 sPacinq - int_cur[20].parm[C_Pl_P3_SP] determines Pl- P3
spacing.
Pl,P3 Power - System interrogation power "i_power" offset by
int_cur[20].parm[INT_PO].
P2 Power - int_cur[20].parm[C_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[20].parm[C_PRF] determines PRF.
Frequency - int_cur[20].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst20.num_ints - determines the number of
interrogations to send.
tst_cur.tst20.i_mode - determines interrogation mode. 0=Mode
A. 1=Mode C.
tst_cur.tst20.prf_lo - Determines starting PRF.
tst cur.tst20.prf_hi - Determines ending PRF.

TEST DATA:
struct T20_P_TYPE
{

int min; /* Minimum pulse width */
int mean; /* Mean pulse width */
int max; /* Maximum pulse width */

} ;
int i mode; /* Interrogation mode 0=A 1=C */
int prf; /* Pulse repetition frequency */
int num_replies; /* Number of replies */
int pulse_cnt[16]; /* Pulse count each pulse */
struct T20_P_TYPE p_width[16]; /* Position widths */
int p_var; /* Power variation in dBm */
int power; /* Highest reply power measured*/
int delay; /* Lowest reply delay measured*/
int e_code; /* Test error codes */

Data size = 142 bytes.

C-26

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A

Comment: PILOT REPORTED TRANSPONDER TROUBLE

DATAS TEST #20 ATCRBS REPLY PULSE SHAPE

Test Data Based on 100 Replies

Interrogation Mode A

PRF - 450

Reply Pulse Power Variation = 1.7 dbm FAILURE

C-27

TEST NUMBER: 22

FILE: aftst22.cc - ATCRBS field test #22.
TEST: ATCRBS Reply Delay and Jitter.

DESCRIPTION: This test measures the reply delay and reply jitter.
Reply delay is defined as the time between the lead edge of the P3
pulse in the interrogation and the lead edge of the first reply
pulse. The national standard requires that the transponder have a
reply delay of 3.0 +/- 0.5 microseconds at all RF input levels from
MTL to -21 dBm.

Reply jitter is the extreme positions of the leading edge of the
reply pulse, or reply delay variation. The National Standard required
that the jitter shall not exceed +/- 0.1 microsecond.

This test produces a plot of reply delay and jitter at various
interrogation power levels. In order for these power levels to be
accurate, the transponder being tested should have the antenna
directly at the calibrated point in the main beam. However, if this
cannot be guaranteed, these test results can still show the
relationship between relative interrogation power and reply delay. An
accurate reply delay measurement can be made when the function
"spandd()" is run following the series of transponder tests.

TEST PROCEDURE: This test first sets the pulse width threshold with a
call to the function "pw_thresh()." This is required so that the
delay measurements are made at the proper level with respect to the
rise time of the reply pulses, which is affected by the reply power
from the transponder being tested.

The test will send the number of interrogations defined in the
test parameter "tst_cur.tst22.num_ints" at each interrogation level.
The interrogation levels to send are defined by the test parameters
"tst_cur.tst22.strt_pow," "tst_cur.tst22.end_pow," and
"tst_cur.tst22.pow_inc." The reply delay minimum, mean, and maximum
are stored at each point.

INTERROGATION PARAMETERS:
Mode A:
P1 width - int_cur[22].parm[A_Pl_WDTH] determines P1 width.
P2 width - int_cur[22].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[22].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[22].parm[A_Pl_P2_SP] determines Pl- P2
spacing.
P1-P3 spacing - int_cur[22].parm[A_Pl_P3_SP] determines P1- P3
spacing.
Pl,P3 power - Determined by test.
P2 power - int_cur[22].parm[A_P2_PO] determines P2 power
offset from Pl,P3 power.
PRF - int_cur[22].parm[A_PRF] determines PRF.
Frequency - int_cur[22].parm[A_FREQ] determines frequency.

C-28

Mode C:
P1 width - int_cur[22].parm[C_Pl_WDTH] determines P1 width.
P2 width - int_cur[22].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[22].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur~22].parm[C_Pl_P2_SP] determines P1-
P2 spacing.
P1-P3 spacing - int_cur[22].parm[C_Pl_P3_SP] determines P1-
P3 spacing.
Pl P3 power - Determined by test.
P2 Power - int_cur[22].parm[C_P2_PO] determines P2 power

offset from Pl,P3 power.
PRF - int_cur[22].parm[C_PRF] determines PRF.
Frequencv - int_cur[22].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst22.num_ints - determines the number of
interrogations to send at each power level.
tst cur.tst22.i mode - determines interrogation mode. 0=Mode
A. 1=Mode C.
tst_cur.tst22.strt_pow - Starting power level.
tst_cur.tst22.end_pow - Ending power level.
tst_cur.tst22.pow_inc - Power level increment.

TEST DATA:
struct T22_P_TYPE
{

int min; /* Minimum reply delay */
int mean; /* Mean reply delay */
int max; /* Maximum reply delay */

} ;
int i_mode; /* Interrogation mode 0=A 1=C */
int prf; /* Pulse repetition frequency */
int num_ints; /* Number of interrogations */
int pcnt_rep[80] /* Percent reply array */
struct T22_P_TYPE p_delay[80]; /* Reply delays */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e code; /* Test error codes */

Data size = 652 bytes.

C-29

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORTED TRANSPONDER TROUBLE

DATAS TEST #22 ATCRBS REPLY DELAY AND JITTER

100 Mode A Interrogations Sent Per Point at 450 PRF

Reply Delay - 3.62 (us)

Jitter - 0.10 (us)

90% Replies Ended at -71 dbm

C-30

TEST NUMBER: 25

FILE: aftst25.cc - ATCRBS field test #25.

TEST: SLS Decoding and dynamic range.

DESCRIPTION: This test measures the transponders response to
interrogations with the P2 suppression pulse included with the
interrogation. The National Standard requires that the
transponder shall initiate suppression (not reply) when the P2 pulse
is equal to or greater than the amplitude of P1 and P3. The nominal
spacing between P1 and P2 is 2.0 microseconds. The National
Standard requires that the transponder shall suppress when the time
between P1 and P2 is between the range of 1.85 and 2.15 microseconds.

When an extra pulse occurs either 8.0 or 21.0 microseconds prior
to the P2 pulse, the transponder shall initiate suppression.

This test procedure runs at various interrogation power levels.
In order for these power levels to be accurate, the transponder being
tested should have the antenna directly at the calibrated point in
the main beam. However, if this cannot be guaranteed, these test
results can still show the relationship between relative
interrogation power and P2 acceptance.

TEST PROCEDURE: The test first runs the "extra pulse" portion of the
test. Pl,P2 and P3 spacing are set to nominal and the extra pulse is
introduced at 8.0 followed by 21.0 microseconds. The test runs for
Mode A and Mode C and at the various power levels. The reply count
for each iteration is recorded.

The extra pulse is then removed from the interrogation. The test
varies the P1 to P2 pulse spacing from "tst_cur.tst25.strt_sp" to
"tst_cur.tst25.end_sp," varied by "tst_cur.tst25.sp_inc." This is run
for the four power levels. The P2 power level is offset from the
Pl,P3 level by the parameter "tst_cur.tst25.p2_pow."

INTERROGATION PARAMETERS:
Mode A:
P1 width - int_cur[25].parm[A_P1_WDTH] determines P1 width.
P2 width - int_cur[25].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[25].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacinq - Determined by test.
P1-P3 sPacina - int_cur[25].parm[A_Pl_P3_SP] determines P1- P3
spacing.
Pl P3 Power - Determined by test.
P2 power - Determined by tst_cur.tst25.p2 pow.
PRF - int_cur[25].parm[A_PRF] determines PRF.
Frequency - int_cur[25].parm[A_FREQ] determines frequency.

C-31

Mode C:
P1 width - int_cur[25].parm[C_Pl_WDTH] determines P1 width.
P2 width - int_cur[25].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[25].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacinq - Determined by test.
P1-P3 spacinq - int_cur[25].parm[C_Pl_P3_SP] determines P1-
P3 spacing.
Pl P3 power - Determined by test.
P2 Power - Determined by tst_cur.tst25.p2_pow.
PRF - int_cur[25].parm[C_PRF] determines PRF.
Frequency - int_cur[25].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst25.num_ints - determines the number of
interrogations to send at each power level.
tct cur.tst2s.i mode - determines interrogation mode. 0=Mode
A. 1=Mode C.
tst_cur.tst25.strt_sp - Starting P1-P2 spacing.
tst_cur.tst25.end_sp - Ending P1-P2 spacing.
tst_cur.tst25.sp_inc - Spacing increment. tst cur.tst25.p2_Pow -

P2 power offset from Pl.

TEST DATA:
int i mode; /* Interrogation mode 0=A 1=C */
int prfi /* Pulse repetition frequency */
int num_ints; /* Number of interrogations */
int strt_sp; /* Starting P1-P2 spacing */
int end_sp; /* Ending P1-P2 spacing */
int sp_inc; /* P1-P2 spacing increment */
int level[4]; /* Power levels */
int xl_pulse_sp; /* Extra pulse spacing #l */
int x2_pulse_sp; /* Extra pulse spacing #2 */
int xp_rep_cnt[4][2][2]; /* X-pulse reply count array

level x spacing x which reply*/
int rep_cnt[4][161]; /* Percent reply array */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 1352 bytes.

C-32

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #25 SLS DECODING AND DYNAMIC RANGE

100 Mode A Interrogations Per Point

PRF = 450

C-33

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #25 SLS DECODING AND DYNAMIC RANGE

100 Mode A Interrogations Per Point

PRF = 450

C-34

TEST NUMBER: 27

FILE: aftst27.cc - ATCRBS field test #27.

TEST: SLS Pulse Ratio.

DESCRIPTION: This test measures the transponders response to
interrogations with the P2 suppression pulse included with the
interrogation at 9 dB below Pl,P3 power. The National Standard
requires that the transponder shall initiate suppression (not reply)
when the P2 pulse is equal to or greater than the amplitude of P1 and
P3. The transponder shall reply to at least 90 percent of the
interrogations when the P1 level exceeds the P2 level by 9 dB or
more, when no pulse is received at the position 2.0 +/- 0.7
microseconds following Pl, or when the duration of P2 is less than
0.3 microsecond. The nominal spacing between Pl and P2 is 2.0
microseconds. The National Standard requires that the transponder
shall suppress when the time between P1 and P2 is between the range
of 1.85 and 2.15 microseconds.

This test procedure runs at various interrogation power levels.
In order for these power levels to be accurate, the transponder being
tested should have the antenna directly at the calibrated point in
the main beam. However, if this cannot be guaranteed, these test
results can still show the relationship between relative
interrogation power and P2 acceptance.

TEST PROCEDURE: The test varies the P1 to P2 pulse spacing from
"tst_cur.tst27.strt_sp" to "tst_cur.tst27.end_sp" varied by
"tst_cur.tst27.sp_inc." This is run for the four power levels. The P2
power level is offset from the Pl,P3 level by the parameter
"tst_cur.tst27.p2_pow."

INTERROGATION PARAMETERS:
Mode A:
P1 width - int_cur[27].parm[A_Pl_WDTH] determines Pl width.
P2 width - int_cur[27].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[27].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - Determined by test.
P1-P3 spacing - int_cur[27].parm[A_Pl_P3_SP] determines P1- P3
spacing.
Pl.P3 power - Determined by test.
P2 power - Determined by tst_cur.tst27.p2_pow.
PRF - int_cur[27].parm[A_PRF] determines PRF.
Frequency - int_cur[27].parm[A_FREQ] determins frequency.

C-35

Mode C:
P1 width - int_cur[27].parm[C_Pl_WDTH] determines P1 width.
P2 width - int_cur[27].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[27].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing - Determined by test.
P1-P3 spacing - int_cur[27].parm[C_Pl_P3_SP] determines Pl- P3
spacing.
Pl P3 power - Determined by test.
P2 power - Determined by tst_cur.tst27.p2_pow.
PRF - int_cur[27].parm[C_PRF] determines PRF.
Frequency - int_cur[27].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst27.num_ints - determines the number of
interrogations to send at each power level.
tst cur.tst27.i_mode - determines interrogation mode. 0=Mode
A. 1=Mode C.
tst_cur.tst27.strt_sp - Starting P1-P2 spacing.
tst_cur.tst27.end_sp - Ending P1-P2 spacing.
tst_cur.tst27.sp_inc - Spacing increment. tst_cur.tst27.p2_pow -

P2 power offset from P1.

TEST DATA:
int i_mode; /* Interrogation mode 0=A 1=C */
int prf; /* Pulse repetition frequency */
int num_ints; /* Number of interrogations */
int strt_sp; /* Starting P1-P2 spacing */
int end_sp; /* Ending P1-P2 spacing */
int sp_inc; /* P1-P2 spacing increment */
int level[4]; /* Power levels */
int rep_cnt[4][161];/* Percent reply array */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 1316 bytes.

C-36

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #27 SLS PULSE RATIO

100 Mode A Interrogations Per Point

PRF = 450

C-37

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #25 SLS PULSE RATIO

100 Mode A Interrogations Per Point

PRF = 450

C-38

TEST NUMBER- 29

FILE: aftst29.cc - ATCRBS field test #29.

TEST: Suppression Duration.

DESCRIPTION: Suppression duration is the time the transponder is
suppressed after receiving a Pl-P2 suppression pair. The suppression
duration is measured from the lead-edge of the P2 pulse that
initiated the suppression to the lead edge of a P1 pulse that
follows. The National Standard requires that the suppression
duration shall be between 25 and 45 microseconds. This test procedure
runs at the power levels required in the MOPS test procedure. In
order for these power levels o be accurate, the transponder being
tested should have the antenna directly at the calibrated point in
the main beam. However, if this cannot be guaranteed, this test
will still measure the suppression duration at the available power
level.

TEST PROCEDURE: The test sets up a Pl-P2 suppression palr on channel
2, and a Pl-P3 interrogation on channel 1. The spacing between the P2
lead edge and the interrogation Pl lead edge is varied from
"tst_cur.tst29.strt_sp" to "tst_cur.tst29.end_sp" varied by
"tst_cur.tst29.sp_dec." The number of replies at each increment of
the spacing is recorded.

INTERROGATION PARAMETERS:
Mode A:
P1 width - int_cur[29].parm[A_Pl_WDTH] determines both P1
widths.
P2 width - int_cur[29].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[29].parm[A_P3_WDTH] determines P3 width.
Pl-P2 spacing - int_cur[29].parm[A_Pl_P2_SP] determines P1- P2
spacing of suppression pair.
Pl-P3 spacing - i-nt_cur[29].parm[A_Pl_P3_SP] determines P1-
P3 spacing.
Pl,P3 power - int_cur[29].parm[A_INT_PO] determines P1- P3
power.
P2 Power - Determined by test (Ch.2 power = Ch.1 power).
RF - int_cur[29].parm[A_PRF] determines PRF.
Frequency - int_cur[29].parm[A_FREQ] determines frequency.

C-39

Mode C:
P1 width - int_cur[29].parm[C_Pl_WDTH] determines both Pl
widths.
P2 width - int_cur[29].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[29].parm[C_P3_WDTH] determines P3 width.
Pl-P2 spacing - int_cur[29].parm[C_Pl_P2_SP] determines P1- P2
spacing of suppression pair.
Pl-P3 spacing - int_cur[29].parm[C_Pl_P3_SP] determines Pl- P3
spacing.
Pl.P3 power - int_cur[29].parm[C_INT_PO] determines P1-P3
power.
P2 Power - Determined by test (Ch.2 power = Ch.1 power).
PRF - int_cur[29].parm[C_PRF] determines PRF.
Frequency - int_cur[29].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst29.num_ints - determines the number of
interrogations to send at each spacing.
tst_cur.tst29.strt_sp - Starting suppression spacing.
tst_cur.tst29.end_sp - Ending suppression spacing.
tst_cur.tst29.sp_dec - Spacing increment.

TEST DATA:
 int prf[2]; /* Pulse rep. frequency (each mode) */
 int num_ints; /* Number of interrogations */
 int i_power[2];/* Interrogation power (each mode) */
 long strt_sp; /* Starting spacing */
 long end_sp; /* Ending spacing */
 long sp_dec; /* Pl-P2 spacing decrement */

 int rep_cnt[2][1201]; /* Reply count array */
 int power; /* Highest reply power measured */

 int delay; /* Lowest reply delay measured */
int e code; /* Test error codes */

Data size = 4832 bytes.

C-40

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #29 SUPPRESSION DURATION

100 Mode A Interrogations Per Point

C-41

TEST NUMBER: 30

FILE: aftst30.cc - ATCRBS field test #30.

TEST: Suppression Reinitiation.

DESCRIPTION: Suppression reinitiation is the ability of the
transponder to initiate suppression immediately following a previous
suppression. The National Standard requires that the transponder
shall be capable of reinitiating suppression within 2 microseconds
after a suppression period.

This test procedure runs at the power levels required in the MOPS
test procedure. In order for these power levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, this test will still measure the suppression duration at
the available power level.

TEST PROCEDURE: The test sets up a Pl,P2 suppression pair followed
by another Pl,P2 suppression pair on channel 2, and Pl,P3
interrogation on channel 1. The spacing between the first Pl,P2 pair
and the second Pl,P2 pair is set to the suppression duration plus 2
microseconds. The suppression duration is measured with a call to
the function "getsd()." The spacing between the P2 lead edge of the
second Pl,P2 pair and the interrogation Pl lead edge is varied from
"tst_cur.tst30.strt_sp" to "tst_cur.tst30.end_sp" varied by
"tst_cur.tst30.sp_dec." The number of replies at each increment of
the spacing is recorded.

INTERROGATION PARAMETERS:
Mode A:
Pl width - int_cur[30].parm[A_Pl_WDTH] determines all three Pl
widths.
P2 width - int_cur[30].parm[A_P2_WDTH] determines both P2
widths.
P3 width - int_cur[30].parm[A_P3_WDTH] determines P3 width.
Pl-P2 spacing - int_cur[30].parm[A_Pl_P2_SP] determines Pl-P2
spacing of both suppression pairs.
Pl-P3 spacinq - int_cur[30].parm[A_Pl_P3_SP] determines Pl- P3

spacing.
Pl.P3 power - int_cur[30].parm[A_INT_PO] determines Pl-P3
power.
P2 power - Determined by test (Ch.2 power = Ch.l power).
PRF - int_cur[30].parm[A_PRF] determines PRF.
Frequency - int_cur[30].parm~A_FREQ] determines frequency.

Mode C:

C-42

Pl width - int_cur[30].parm[C_Pl_WDTH] determines all three Pl
widths.
P2 width - int_cur[30].parm[C_P2_WDTH] determines both P2
widths.
P3 width - int_cur[30].parm[C_P3_WDTH] determines P3 width.
Pl-P2 spacing - int_cur[30].parm[C_Pl_P2_SP] determines P1-P2
spacing of both suppression pairs.
Pl-P3 spacing - int_cur[30].parm[C_Pl_P3_SP] determines P1-P3
spacing.
Pl,P3 Power - int_cur[30].parm[C_INT_PO] determines P1-P3
power.
P2 Power - Determined by test (Ch.2 power = Ch.1 power).
PRF - int_cur[30].parm[C_PRF] determines PRF.
Frequency - int_cur[30].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst30.num_ints - determines the number of
interrogations to send at each spacing.
tst_cur.tst30.strt_sp - Starting suppression spacing.
tst_cur.tst30.end_sp - Ending suppression spacing.
tst_cur.tst30.sp_dec - Spacing increment.

TEST DATA:
int prf[2]; /* Pulse rep. frequency (each mode) */
int num_ints; /* Number of interrogations */
int i_power[2]; /* Interrogation power (each mode)*/
long strt_sp; /* Starting spacing */
long end_sp; /* Ending spacing */
long sp_dec; /* P1-P2 spacing decrement */
long s[2]; /* Suppression durations */
int rep_cnt[2][1201]; /* Reply count array */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 4838 bytes.

C-43

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #30 SUPPRESSION REINITIATION

100 Interrogations Per Point

C-44

TEST NUMBER: 31

FILE: aftst31.cc - ATCRBS field test #31.

TEST: Recovery after Suppression.

DESCRIPTION: This test determines if the transponder returns to full
sensitivity within the prescribed time following a suppression
period. The National Standard requires that the sensitivity for
ATCRBS signals be at MTL no later than microsecond after the end of
the suppression period.

This test procedure runs at the power levels required in the MOPS
test procedure. In order for these power levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, this test can still measure the suppression recovery if
the available power level is adequate.

TEST PROCEDURE: The test sets up a Pl,P2 suppression palr on channel
2f and Pl,P3 interrogation on channel 1. The spacing between the P2
lead edge and the interrogation Pl lead edge is varied from
"tst_cur.tst31.strt_sp" to "tst_cur.tst31.end_sp" varied by
"tst_cur.tst31.sp_dec." The power level of the suppression pair is
set to -30 dBm and the power level of the interrogation is set to
MTL. MTL is measured with a call to "getmtl()" from this test. The
reply count for each increment of the spacing is recorded.

The test also measures the suppression duration with nominal
conditions as a comparison for the recovery test.

INTERROGATION PARAMETERS:
Mode A:
Pl width - int_cur[31].parm[A_Pl_WDTH] determines both P1
widths.
P2 width - int_cur[31].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[31].parm[A_P3_WDTH] determines P3 width.
Pl-P2 spacing - int_cur[31].parm[A_Pl_P2_SP] determines P1-P2
spacing of suppression pair.
Pl-P3 spacing - int_cur[31].parm[A_Pl_P3_SP] determines P1-P3
spacing.
Pl.P3 Power - Determined by test (MTL).
P2 power - Determined by test (-30 dBm for Pl,P2).
PRF - int_cur[31].parm[A_PRF] determines PRF.
Frequency - int_cur[31].parm[A_FREQ] determines frequency.

C-45

Mode C:
Pl width - int_cur[31].parm[C_Pl_WDTH] determines both Pl
widths.
P2 width - int_cur[31].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[31].parm[C_P3_WDTH] determines P3 width.
Pl-P2 sPacinq - int_cur[31].parm[C_Pl_P2_SP] determines Pl-P2
spacing of suppression pair.
Pl-P3 spacinq - int_cur[31].parm[C_Pl_P3_SP] determines Pl-P3
spacing.
Pl,P3 power - Determined by test (MTL).
P2 Power - Determined by test (-30 dBm for Pl,P2).
PRF - int_cur[31].parm[C_PRF] determines PRF.
Frequency - int_cur[31].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst31.num_ints - determines the number of
interrogations to send at each spacing.
tst_cur.tst31.strt_sp - Starting suppression spacing.
tst_cur.tst31.end_sp - Ending suppression spacing.
tst_cur.tst31.sp_dec - Spacing increment.

TEST DATA:
 int prf[2]; /* Pulse rep. frequency (each mode)*/
 int mtl[2]; /* MTL measured each mode */
 int sd[2]; /* Measured Suppression durations */
 int num_ints; /* Number of interrogations */

int sup_power[2]; /* Suppression pair powers */
long strt_sp; /* Starting spacing */
long end sp; /* Ending spacing */
long sp=ec; /* Pl-P2 spacing decrement */
int rep_cnt[2][1201]; /* Reply count array */
int power; /* Highest reply power measured */

 int delay; /* Lowest reply delay measured */
int e code: /* Test error codes */

Data size = 4846 bytes.

C-46

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #31 RECOVERING AFTER SUPPRESSION

100 Interrogations Per Point

Mode A Mode C
PRF = 450 PRF = 450
MTL = -74 dbm MTL = -74 dbm
P1.P2 SUPPRESSION POWER = -30 dbm p1. P2 SUPPRESSION POWER= -30 dbm

C-47

TEST NUMBER: 34

FILE: aftst34.cc - ATCRBS field test #34.

TEST: Pulse Position Tolerances.

DESCRIPTION: This test determines how the transponder responds to
interrogations with the Pl-P3 pulse spacings varied within the
required acceptance range as well as beyond the acceptance range. The
National Standard requires that the transponder accept the
interrogation as valid if the spacing between the Pl and P3 pulse is
within +/- 0.2 microsecond of the nominal spacing. The transponder
shall not accept the interrogation if the Pl and P3 pulse spacing
differs from nominal by 1.0 microsecond or more.
This test procedure runs at the power levels required in the MOPS
test procedure. In order for these power levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, this test can still measure the pulse position tolerances
if the available power level is adequate.

TEST PROCEDURE: The test sets up a standard ATCRBS interrogation. The
spacing between the P1 and P3 lead edges is varied from
"tst_cur.tst34.strt_sp" to "tst_cur.tst34.end sp" varied by
"tst_cur.tst34.sp inc." The power level of the interrogation is set
to MTL + 10 dBm. MTL is measured with a call to "getmtl()" from this
test. The reply count for each increment of the spacing is recorded.

INTERROGATION PARAMETERS:
Mode A:
Pl width - int_cur[34].parm[A_Pl_WDTH] determines Pl width.
P2 width - int_cur[34].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[34].parm[A_P3_WDTH] determines P3 width.
Pl-P2 spacing - int_cur[34].parm[A_Pl_P2_SP] determines Pl- P2

spacing.
 Pl-P3 spacing - Determined by test.
 Pl.P3 power - Determined by test (MTL + 10 dB).

P2 power - int_cur[34].parm[A_P2_PO] determines P2 power. PRF -
int_cur[34].parm[A_PRF] determines PRF.
 Frequency - int_cur[34].parm[A_FREQ] determines frequency.

C-48

Mode C:
Pl width - int_cur[34].parm[C_Pl_WDTH] determines Pl width.
P2 width - int_cur[34].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[34].parm[C_P3_WDTH] determines P3 width.
Pl-P2 spacing - int_cur[34].parm[C_Pl_P2_SP] determines Pl- P2

spacing.
Pl-P3 sPacinq - Determined by test.
Pl.P3 power - Determined by test (MTL + 10 dB).
P2 Power - int_cur[34].parm[C_P2_PO] determines P2 power. PRF -

int_cur[34].parm[C_PRF] determines PRF.
Frequency - int_cur[34].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst34.num_ints - determines the number of
interrogations to send at each spacing. tst_cur.tst34.strt_sp

- Starting pulse spacing. tst_cur.tst34.end_sp - Ending pulse
spacing. tst_cur.tst34.sP_inc - Spacing increment.

TEST DATA:
 int num_ints; /* Number of interrogations */
 int mtl[2]; /* MTL measured each mode */
 int i_power[2]; /* Interrogation powers */
 long strt_sp; /* Starting spacing */
 long end_sp; /* Ending spacing */
 long sp_inc; /* Pl-P2 spacing increment */

int rep_cnt[2][401]; /* Reply count array */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 1628 bytes.

C-49

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #34 PULSE POSITION TOLERANCES

100 Interrogations Per Point

C-50

TEST NUMBER: 36

FILE: aftst36.cc - ATCRBS field test #36.

TEST: Pulse Duration Tolerances.

DESCRIPTION: This test determines how the transponder responds to
interrogations with the P1 and P3 pulse widths varied within their
required acceptance range as well as beyond their acceptance range.
The National Standard requires that the transponder accept the
interrogation as valid if the width of both P1 and P3 pulses is
between 0.7 and 0.9 microsecond. The reply ratio shall be less than
10 percent if the duration of either P1 or P3 is less than 0.3
microsecond.

This test procedure runs at the power levels required in the MOPS
test procedure. In order for these power levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, this test can still measure the pulse duration tolerances
if the available power level is adequate.

TEST PROCEDURE: The test sets up a standard ATCRBS interrogation. For
each interrogation mode, the width of P1 and P3 is varied one at a
time from "tst_cur.tst36.strt_pw" to "tst_cur.tst34.end_pw" varied
by "tst_cur.tst34.pw_inc." The power level of the interrogation is
set to MTL + 10 dBm. MTL is measured with a call to "getmtl()" from
this test. The reply count for each increment of the pulse width is
recorded.

INTERROGATION PARAMETERS:
Mode A:
P1 width - Determined by test.
P2 width - int_cur[36].parm[A_P2_WDTH] determines P2 width.
P3 width - Determined by test.
P1-P2 spacing - int_cur[36].parm[A_Pl_P2_SP] determines P1-P2
spacing.
P1-P3 sPacing - int_cur[36].parm[A_Pl_P3_SP] determines P1-P3
spacing.
Pl.P3 Power - Determined by test (MTL + 10 dB).
P2 power - int_cur[36].parm[A_P2_PO] determines P2 power.
PRF - int_cur[36].parm[A_PRF] determines PRF.
Frequency - int cur[36].parm[A_FREQ] determines frequency.

C-51

Mode C:
Pl width - Determined by test.
P2 width - int_cur[36].parm[C_P2_WDTH] determines P2 width.
P3 width - Determined by test.
Pl-P2 spacinq - int_cur[36].parm[C_Pl_P2_SP] determines Pl-P2
spacing.
Pl-P3 spacing - int_cur[36].parm[C_Pl_P3_SP] determines Pl-P3
spacing.
Pl,P3 power - Determined by test (MTL + 10 dB).
P2 power - int_cur[36].parm[C_P2_PO] determines P2 power.
PRF - int_cur[36].parm[C_PRF] determines PRF.
Frequency - int_cur[36].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst36.num_ints - determines the number of
interrogations to send at each increment. tst_cur.tst36.strt_pw

- Starting pulse width. tst_cur.tst36.end_pw - Ending pulse width.
tst_cur.tst36.pw_inc - Width increment.

TEST DATA:
 int num_ints; /* Number of interrogations */
 int mtl[2]; /* MTL measured each mode */
 int i_power[2]; /* Interrogation powers */
 long strt_pw; /* Starting width */
 long end_pw;/* Ending width */
 long pw_inc;/* Pl-P2 width increment */

int rep_cnt[2][2][41]; /* Reply count array */
 int power; /* Highest reply power measured */
 int delay; /* Lowest reply delay measured */

int e_code; /* Test error codes */

Data size = 352 bytes.

C-52

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #36 PULSE DURATION TOLERANCES

100 Interrogations Per Point

C-53

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #36 PULSE DURATION TOLERANCES

100 Interrogations Per Point

C-54

TEST NUMBER: 41

FILE: aftst41.cc - ATCRBS field test #41.

TEST: Simultaneous Interrogations.

DESCRIPTION: This test determines how the transponder responds to
receiving both a Mode A and Mode C interrogation simultaneously. The
National Standard requires that if the transponder receives two valid
ATCRBS interrogations simultaneously it shall enter the suppression
state if one of the received pulse patterns is a P1P2 suppression
pair, or generate a Mode C reply if one of the received patterns is a
Mode C interrogation.

This test procedure runs at the power levels required in the MOPS
test procedure. In order for these power levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, this test can still run if the available power level is
adequate.

TEST PROCEDURE: The test sets up a standard Mode C interrogation with
a 0.8 microsecond pulse 8.0 microseconds prior to P3 (simultaneous
interrogations). The transponder is interrogated with four
variations of this interrogation: with no P2 pulses, a Mode C P2
pulse, a Mode A P2 pulse, and both interrogations including a P2
pulse. The type of reply for each situation is determined by first
acquiring the Mode C and Mode A reply codes and comparing them to the
reply codes.

INTERROGATION PARAMETERS:
 P1 width - Determined by test.
 P2 width - Determined by test.
 P3 width - Determined by test.
 P1-P2 spacinq - Determined by test.
 Pl-P3 sPacinq - Determined by test.
 Pl,P3 Power - Determined by test (MTL + 10 dB).
 P2 power - Determined by test (MTL + 10 dB).
 PRF - int cur[41].parm[A_PRF] determines PRF.
 Frequency -

TEST PARAMETERS:
tst_cur.tst41.num_ints - determines the number of interrogations to

send at each increment.

C-55

TEST DATA:
 int num_ints; /* Number of interrogations */
 int code[2];/* Acquired codes O=A l=C */
 int mtl; /* Minimum transmit level */
 int i_power;/* Interrogation power */

int rep_cnt[3][4]; /* Reply count array */
 int power; /* Highest reply power measured */
 int delay; /* Lowest reply delay measured */

int e_code; /* Test error codes */

 Data size = 40 bytes.

C-56

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #41 SIMULTANEOUS INTERROGATIONS

INTERROGATIONS % REPLY

SI WITH NO P2 PULSES

SI WITH MODE A P2

SI WITH MODE C P2

SI WITH BOTH P2’S

MODE A

0

0

0

0

MODE C

49**

0

0

0

OTHER

0

0

0

0

MODE A CODE = 7777

MODE C CODE = 0

** INDICATES FAILURE

C-57

TEST NUMBER: 42

FILE: aftst42.cc - ATCRBS field test #42.

TEST: Single Pulse Desensitization and Recovery.

DESCRIPTION: This test measures the transponders' desensitization
from a single interrogation pulse. When the transponder receives any
pulse more than 0.7 microsecond in duration it is desensitized
temporarily for all received signals by raising the receivers
threshold. Immediately after the desensitizing pulse, the receiver
shall be between the level of the desensitizing pulse and 9 dB below
that. The National Standard requires that the receiver shall recover
sensitivity within 3 dB of MTL, within 15 microseconds after
reception of the trailing edge of a desensitizing pulse having a
signal strength up to 50 dB above MTL. Recovery shall be at an
average rate not exceeding 4.0 dB per microsecond.

This test procedure runs at the power levels required in the MOPS
test procedure. In order for these power levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, this test can still measure the pulse desensitization if
the available power level is adequate. The power level required for
this test is quite high.

TEST PROCEDURE: The test sets up a standard ATCRBS interrogation
preceded by a single pulse. The spacing between the pulse and the
interrogation is varied from "tst_cur.tst42.strt_sp" to
"tst_cur.tst42.end_sp" varied by "tst_cur.tst42.sp_inc." The power
level of the interrogation and whether or not 90 percent replies were
receded is recorded for each spacing.

INTERROGATION PARAMETERS:
Mode A:
P1 width - int_cur[42].parm[A_Pl_WDTH] determines P1 width.
P2 width - int_cur[42].parm[A_P2_WDTH] determines P2 width and
the width of the desensitizing pulse.
P3 width - int_cur[42].parm[A_P3_WDTH] determines P3 width.
P1-P3 spacing - int_cur[42].parm[A_Pl_P3_SP] determines P-P3
spacing.
Pl,P3 power - Determined by test (MTL).
PRF - int_cur[42].parm[A_PRF] determines PRF.
Frequency - int_cur[42].parm[A_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst42.i_mode - determines the interrogation mode.
tst_cur.tst42.strt_sp - Start spacing.
tst_cur.tst42.end_sp - End spacing.
tst_cur.tst42.sp_inc - Spacing increment.

TEST DATA:
 int i_mode; /* Interrogation mode 0=A 1=C */

C-58

 int mtl; /* MTL measured */
 int dp_power; /* Desensitizing pulse power */
 int mx_power; /* Maximum system power . */
 int strt_sp; /* Start spacing */
 int end_sp; /* End spacing */
 int sp_inc; /* Spacing increment */

int rep_90_flg[80]; /* 90 percent reply flags */
int int_pow[80]; /* Interrogation powers */
int power; /* Highest reply power measured */

 int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 340 bytes.

C-59

TEST NUMBER: 44

FILE: aftst44.cc - ATCRBS field test #44.

TEST: Undesired Replies.

DESCRIPTION: This test is used to monitor the transmitter of the
transponder to see if it sends unsolicited replies. If this test
is run in an active air traffic environment, replies could be
generated by interrogation sources within the area. For a true
unsolicited reply test, the transponder should be connected to the
test system by coaxial cable.

TEST PROCEDURE: This test simply sets up a constant reply window and
monitors for rePlies the allotted time.

INTERROGATION PARAMETERS:
 Not applicable.

TEST PARAMETERS:
tst_cur.tst44.time - Number of seconds to monitor replies.

TEST DATA:
int time; /* Time in seconds for test */
int rep_cnt; /* Reply count */

Data size = 4 bytes.

C-60

TEST NUMBER: 55

FILE: aftst55.cc - ATCRBS field test #55.

TEST: Suppression.

DESCRIPTION: This test measures the transponders response to
interrogations with the P2 suppression pulse included with the
interrogation equal in amplitude to Pl,P3 and at 9 dB below Pl,P3
power. The National Standard requires that the transponder shall
initiate suppression (not reply) when the P2 pulse is equal to or
greater than the amplitude of P1 and P3. The transponder shall reply
to at least 90 percent of the interrogations when the P1 level
exceeds the P2 level by 9 dB or more. If multiple PRF mode is
selected this test can show the relationship between PRF and
suppression acceptance.

This test procedure runs at various interrogation power levels.
In order for these power levels to be accurate, the transponder being
tested should have the antenna directly at the calibrated point in
the main beam. However, if this cannot be guaranteed, these test
results can still show the relationship between relative
interrogation power and P2 acceptance.

TEST PROCEDURE: This test has two operating modes: single PRF and
multiple PRF modes. The operating mode is determined by the test
parameter variable "tst_cur.tst55.t_mode" (0=single 1=multiple). In
"single PRF mode" the test will run the two suppression ratios at a
single PRF which is determined by the test parameter
"tst_cur.tst55.s_prf." This mode should be selected when a shorter
test time is required, suppression vs. PRF information is not
desired, or if the test is being conducted in a field environment
where a high PRF could interfere with the air traffic control
systems. Multiple PRF mode will conduct the same test repeated for 10
different PRF's. The PRF's are determined by the test parameters
"tst_cur.tst55.m_prf_lo" and tst_cur.tst55.m_prf_hi." The 10 PRF's
are evenly divided between the low and high PRF.

INTERROGATION PARAMETERS:
Mode A:
P1 width - int_cur[55].parm[A_Pl_WDTH] determines P1 width.
P2 width - int_cur[55].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[55].parm[A_P3_WDTH] determines P3 width.
P1-P2 sPacina - int_cur[55].parm[A_Pl_P2_SP] determines P1- P2

spacing.
P1-P3 spacinq - int_cur[55].parm[A_Pl_P3_SP] determines P1- P3

spacing.
Pl.P3 power - int_cur[55].parm[A_INT_PO] determines power. P2

Power - Determined by test.
 PRF - Determined by test.
 Frequency - int_cur[55].parm[A_FREQ] determines frequency.

C-61

Mode C:
P1 width - int cur[55].parm[C_Pl_WDTH] determines P1 width.
P2 width - int cur[55].parm[C_P2_WDTH] determines P2 width.
P3 width - int cur[55].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing int_cur[55].parm[C_Pl_P2_SP] determines P1-
P2 spacing.
Pl-P3 spacing int cur r 551.parm[C_Pl_P3_SP] determines P1-
P3 spacing.
Pl.P3 power - int_cur[55].parm[C_INT_PO] determlnes power. P2

Power - Determined by test.
PRF - Determined by test.
Frequency - int_cur[55].parm[C_FREQ] determines frequency.

TEST PARAMETERS:
tst_cur.tst55.num_ints - determines the number of
interrogations to send.
tst_cur.tst55.i_mode - determines interrogation mode. 0=Mode
A. l=Mode C.
tst_cur.tst55.t_mode - determines test mode 0=single PRF,
1=multiple PRF.
tst_cur.tst55.s_Prf - PRF if single mode..
tst_cur.tst55.m_Prf_lo - Low PRF if multiple mode.
tst_cur.tst55.m_prf_hi - High PRF if multiple mode.

TEST DATA:
 int num_ints; /* Number of interrogations */
 int i_mode; /* Interrogation mode 0=A 1=C */
 int t_mode; /* Test mode, 0=lPRF 1=Mul. PRF */
 int s_prf; /* Single PRF */
 int m~Prf_lo; /* Multiple PRF low */
 int m_prf_hi; /* Multiple PRF high */

int rep_arr[2][10]; /* Reply array */
 int power; /* Highest reply power measured */
 int delay; /* Lowest reply delay measured */

int e_code; /* Test error codes */

Data size = 58 bytes.

C-62

Aircraft ID: N1234 Aircraft Type: CESSNA 170 Test Time:

Transponder Type: KING KT76A Transponder Serial#

Comment: PILOT REPORT TRANSPONDER TROUBLE

DATAS TEST #55 SUPPRESSION

Test Data Based on 100 Mode A Interrogations

Single PRF = 235

p2 - p1 DIFF % REPLY TEST SPEC

0 DBM 0 10% OR LESS
REPLY

-9 DBM 100 90% OR GREATER
REPLY

